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Scribe Notes for Algorithmic Number Theory
Class 9—May 29, 1998

Scribes: Cara Struble and Craig Struble

Abstract

Today we discuss Sections 4.4 and 4.5 in the text, covering continuants, continued fractions, and
convergents.

1 Continuants

Throughout this discussion, we use the notation from Sections 4.2 and 4.3 for the equations given
by steps of the Fuclidean and extended Euclidean algorithms. Recall the matrices My, M, ..., M,
from the extended Euclidean algorithm,

o [ a 1
MO - i 1 O :| Y
. [ apg 1 ar 1| | aar+1 a
Ml__l oHl o]_[ ay 1}’
My — [ apga; +1 ag ay 1 | apaiaz +ag+as apa; + 1
2 = - ’
ai 1 1 0 ajaz +1 ai
Now, consider the matrices of the same form with entries from Z[ Xy, X, ..., X,_1]. So,

X, 1) [ X 1] [ X5 1

1 0 1 0 1 0
[ (X, Xiga, ..., X5) fra(Xi, Xiga, -+ -, Xj1)
for(Xit1, Xigo, .-, X)) foa(Xig1, Xigo, ..o, Xj1)

From this we see, f11 is a function of j — ¢ 4+ 1 variables, fio2 is a function of j — ¢ variables, fo1
is a function of j — ¢ variables, and fo9 is a function in j — ¢ — 1 variables, where f11, f12, fo1, and

fo2 € Z| Xy, X1, ..., Xn—1]. In fact, polynomials in the same number of variables have the same
form.
Suppose there is exactly one polynomial for each k, denoted Q(Xo, ..., Xx—1). For some small

values of k, Qy is

Qo() 1
Q1(Xo) Xo
Q2(Xo0, X1) = XoX1+1
Q3(Xo, X1, X2) = XoX1Xo+ X+ Xo.
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These equations work for My, M7, and My above with the appropriate substitutions. Qq, @1, Q2, @3
form the base case for an inductive definition of Q. Suppose that we know the continuants for
Qr—1,Qk—2, and Q3. We can calculate Qx with the following equations:

R R R ey

_ [ Qr(Xo, -y Xp—1)  Qr— 1(X0,---,Xk—2)]
Qr-1(X1,..., X 1) Qk 2(X1,. .., Xg2)

_ |: Qkfl(XU,...,Xk,Q) (XU,. ,kag) :| |: Xi_1 1 :|
Qr—2(X1, ..., Xk 2) 3(X1, .., Xp3) I 0

From the matrix multiplication, we see that
Qr(Xo, .-y Xg—1) = Xp1Qr—1(Xo, -+ -, Xk—2) + Qp—2(Xo, ..., Xi—3)-

Qy is formed by the sum X; 1Qr_1 and Qr_o. Note that X 1 is the last variable for Q. For
example,

Qr-1(X1,.. ., Xp1) = Xpo1Qr—2(X1, .., Xi—2) + Qr—3(X1, ..., Xp_3).

The polynomial Qy, is called the k*" continuant. Continuants are used to compute each u; in the
Fuclidean algorithm.

Theorem 1.1 (Theorem 4.4.5). Suppose the FEuclidean algorithm runs on input (u,v) in n
steps. Then,

u; = dQn i(ai,...,an 1)
where d = ged(u, v).

This is shown for ug, but the theorem is easily proved with appropriate substitutions.

u u
] =]
uy = unQn(Xg, ceey X”*1)|Xi:ai
= QX0 o, Xt e,
= dQn(ag,...,an_1).
We abbreviate continuants by
Qiv1(Xj, Xjy1,.. -, Xji) = Qlj,j+1]

Some examples of this abbreviation are

Q[0,0] = Xp
QL1 = Xi
Q0,1] = XoXi+1
Q,-1] = Q[1,0]
= Q[2,1]



Scribe Notes for Algorithmic Number Theory Class 9—DMay 29, 1998 3

Now, consider the determinant of the matrix M,,.

([0 Gy ]) - (7S] 0] 8))
= (=1)"*!

QoA QOn-1 ] _ e
det( Ql1, n] Q[l,n—l]_) = Q[0,n]Q[1,n—1] — QJ0, 11Q[1,n]

The following theorem follows directly.
Theorem 1.2 (Theorem 4.4.2).
(_1)n+1 = Q[Oa n]Q[la n-— 1] - Q[Oa n-— I]Q[la n]

Now suppose that the matrix M, is split at an arbitrary index 1.

_ Q[Oan] Q[Oanil]
Mn = [Q[l,n] Q[ln—l]]

(L ol a5 ol )
_ [Qm@ sz—u][Q i+1,n] Qh+1n—ﬂ]
Q1,71 Q[1,i—1] Qli+2,n Qi+2,n—1]
This leads to the following theorem.

Theorem 1.3 (Theorem 4.4.4). For0<i<mn-—1,

2 Continued Fractions

A rational number u/v can be approximated by r/s where |r| < |u| and |s| < |v|. By Theorem
4.4.5, we can express u/v as

@ = u — dQn(aO’al""7an—1)
wy v dQp-1(ai,az,...,an_1)

This gives us the rational function

Q{Oan_ 1]
Q{la n— 1] .
We can then apply Theorem 4.4.4 to obtain
Q[Oa n— 1] _ Q[Oa O]Q[lan* 1] + Q[Oa *1]Q{2an B 1]
Q[lanil] B Q[lanil]
_ Q[Oa —1]@{2,12— 1]
= Q[0,0]+ O, n—1]
_ Q[Q,?’L— 1]
- QL
1
= Ot Qm a1

Q[2,n— 1]
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Doing the same manipulations iteratively, we get
1 1
Xo+———— = X
S R
Q[2,n—1] YT QR n—1]
1
= Xo+ T
M QR 1
Q[37 n— 1]
1
= Xo+ T
X1+ T
Xo+---+
anl
ey X1

This is called a continued fraction. We write it as [X(, X,
216 ap = 1,a1 :5,a2: 1,a3 = 1,a4:5. So

Example 2.1. For the fraction {353,
216 n 1
_ = ao
1
183 ay + .
az +
as + —
a4
1
= 1+ :
14+ T

Theorem 2.2 (Theorem 4.5.1). A real number = has a finite representation as a continued

fraction if and only if x is rational.
We are interested in approximations that look like Q[0,7]/Q[1,1].

2.1 Convergents
The i** convergent of u/v is p;/q; where
Di
4i

Qi+1(ag, a1, ..., a;)

= Qi(ala az, ..., ai)-

Each p;/g; is an approximation to u/v
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Example 2.3. Using 216/183 again, we obtain these values:

= Q1(ap) = @0 =Qo()=1
= Q2(apa1) = apaq +1 g =Qi(a1) =a
= Q3(apar1a2) = aparaz + ap+ a2 g2 = Q2(a1a2) = ajaz + 1

= Q4(apaiazaz) =
ag(alagag + a1 + a3) + asaz + 1

P4 = Qs(aparazazas) = %9 =72 qa = Qa(arazazay) = 4 =61
Of course, 72/61 is exactly u/v.
From Theorem 4.4.2, plugging in a; for X;, we can say

(D)™ = Q[0,4]Q[1,i— 1] — Q[0 — 1]Q[1, 1] = pigi1

216

Example 2.4. Once again using 53,

(*1)1“: pPigo —poq1 = 6x1—5x1=1

(71)2+1 = poq1 — P12 = T*5H—6%x6=—1.

This is saying that the cross product of these fractions alternates between 1 and -1.

This is the end of the material we cover in Chapter 4.
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g3 = Q3(a1a2a3) = ajazaz + a1 + a3
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