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Scribes: Wen Wang, Yizhong Wang, and Jeremy Rotter

Abstract

This class continues the worst-case analysis of Euclidean algorithm. Then we cover the extended
Fuclidean algorithm.

1 Review

In the refined analysis of the Euclidean algorithm, we developed the following.

e Assume u > v > 0. Let up = u,u; = v, and

uy = aou1 + u2
U = a1u2 +us
U = agu3z+ Ug
Up—2 = Gp_2Up_1 + Uy
Un—1 = 0Gp—-1Un.
In this case, there are n division steps. We have that ug > w3 > u9--- > u, and u, =
ged(u, v).
e The Fibonacci numbers are defined recursively, where Fy =0, F; = 1, and F,, = Fj, 1+ Fj, o.

We can also find a closed form expression,

_an_IBn

F, =
V5

where a = % and 8 = 172‘/5.

If we note that |3| < 1, we can rewrite the expression as

_at=pr ot gt at
=== w"n )

2 Euclidean Algorithm: Worst-Case Analysis

First we bound n as a function of w.

Lemma 2.1 (4.2.1 in text). Let there be integers u > v > 0 such that the Euclidean algorithm
on input (u,v) performs n division steps. Then u > Fy19 and v > Fpy1.
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Proof. We shall use induction to prove this lemma:

e Base Case: Let n = 1. Then u = agv. Since ug > uq > 0, we must have uq > 1 and ug > 2.
Therefore, u = ug > F3 = Fj49 and v = uy > F5 = Fj, 11, as required.

e Inductive Step: Suppose the lemma holds true for 1 <n < N,

Uy = agul + u2
U] = aqu2 + u3

UN_1 = AN_1UN-
By our inductive hypothesis,

ur > Fy_142 = Fni1
uz > Fn 141 =Fn
ug > uy +ug > Fyg1 + Fy = Fyqo.

Hence, u = up > Fyy2 and v = uy > Fy41. The lemma follows by induction.

O
Corollary 2.2. In the Euclidean algorithm, the number of division steps is n = O(lg u).
Proof. According to the lemma, u = ug > Fj,59, hence
n+2 _ gn+2
u> il Q(a™)
V5
so, taking log, of both sides, we get
logau = Q(n)
and hence,
n=0(lgu).
O

Observation 2.3 (Exercise 4.5 in text). For every i satisfying 1 <i <n — 1, we have that
;i1 An-1 < U4

Proof. We can prove this by using induction from i = n — 1 down to 0.

e Base Case: If i =n — 1, then up_1 = ap_1uy, So, clearly ap_1 < uy_q.

e Inductive Step: Suppose a;41a;42+ a1 < u;y1. We know that

Uj = QjUi4+1 + Uit > GiUit1
and, using our inductive hypothesis,
Ui 2 Qilijy] = GiQiq1Git2 "+ An—1,

as required.



Scribe Notes for Algorithmic Number Theory Class 8—May 28, 1998 3

]
Corollary 2.4. The bit complezity of the Euclidean algorithm is O((lgu)(lgv)).
Proof. The bit complexity can be written
o > (ga)(guina)| = O|(gv) Y lga
0<i<n—1 0<i<n—1
= O (gv) |n+ Z logaa;
0<i<n—1
= O (Igv) |lgu+ logs H a;
0<i<n—1
= O((gv)(gu + logau))
= O((gv)(lgu)).
]

3 Extended Euclidean Algorithm

Theorem 3.1. Suppose that u,v,a,b,c,d€ Z, M = [ CCL Z ], and M - [ u } = [ v ]
If det(M) = +1, then ged(u, v) = ged(z, y).

Proof. We shall consider the two values for det m separately:

e First, suppose det(M) = 1. Then ad — bc = 1. Also, z = au + bv and y = cu + dv. Clearly,
ged(u,v) | ged(z,y).

wmiart= (£ i [5][1]

—c Y v

Since det M~! = 1, the same argument yields gcd(z,y) | ged(u,v). Hence, ged(z,y) =
ged(u, v).
e Now consider the case where det(M) = —1 and let M = [ ;a Zib ]

Then M - [ Z } :[ ;f ] and det(M) = 1, so ged(u, v) = ged(—z, y) = ged(z, y).

The Euclidean algorithm maps (u;, wi+1) — (wit1, uir2) by computing

Uj = GjUi4+1 + Uit2.
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If we consider the matrix multiplication
a; 1 Uipl | | ui
1 0 Uj+2 Ui+1 ’
0 1 wp || win
1 —a; Uit1 | Uiz |’
we can see that they both preserve the greatest common divisor, since

(5 4]) ([t ]

o ag 1 a; 1 ap 1 - bk Ck
=[5 o] [ oL o= &)

we can see that, since det(Mj) = £1,

or the matrix multiplication

Now, if we define

and
Ukl | _ M, U
Uk42 ur |-

-1 _ (_1\k+1 €k —Ck
My =) [—dk bk}

We can define

And, applying it to the two numbers we wish to find the greatest common divisor of, we get
Un —1 Uo
=M
|5 =]

ged(u, v) = up = (—=1)"en_1ug + (—1)"ep_qus.

or, more specifically,

Theorem 3.2 (4.3.1 in text). Let u,v,c € Z. Then au+ bv = ¢ has a solution a,b € Z if and
only if ged(u, v) | c.

Proof. Assume ged(u,v) | e. Then ¢ = ged(u, v)k for some k € Z, so we can just multiply the
above equation by k, getting

ged(u,v)k=c=((—-1)"ep—1k)u + ((—1)"+1cn_1k) v.

Now, assume au + bv = ¢ has a solution a, b € Z. Clearly ged(u, v) | au and ged(u, v) | bv, hence
ged(u, v) must divide their sum, c. O
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Extended Euclid(u, v)
1 0
M [O : ]
u —u
v — v
1+ 0
while (v # 0) do
Yl
q < [v/
r«—u —qv
qg 1
M M[ 10 ]
(v, v') « (v',7)
7—13+1
return (u/, (—1)*Maa, (—1)"1 Mis)

Figure 1: Pseudocode for the Extended Euclidean algorithm

3.1 The Extended Euclidean Algorithm

The pseudocode for the Extended Euclidean algorithm is in Figure 3.1.

Example 3.3. uy = 216, uy = 183, n =5, and (ag, a1, a2, a3 ,aq) = (1, 5, 1, 1, 5).
up =216 M_, = [ L O]

01
up = 183 Moz:i (1)]
wem n=[ 7030181
R HHIEE
ug =15 M3=g§][1(1)]:[ﬁ)g]
wes =B T][3 5] =[R2 8]
ug =0 M41:[6111 132}

And, we have our answer:

(—11) - 216 + (13) - 183 = 3.
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Corollary 3.4 (4.3.3 in text). We can find integers a and b such that au + bv = ged(u,v) in
time O((lgu)(1gv)).

4 Next Time

The next class will cover Section 4.4 (Continuants) and Section 4.5 (Continued Fractions) in the
text.



