Scribe Notes for Algorithmic Number Theory Class 8—May 28, 1998

Scribes: Wen Wang, Yizhong Wang, and Jeremy Rotter

Abstract

This class continues the worst-case analysis of Euclidean algorithm. Then we cover the extended Euclidean algorithm.

1 Review

In the refined analysis of the Euclidean algorithm, we developed the following.

• Assume u > v > 0. Let $u_0 = u, u_1 = v$, and

$$u_{0} = a_{0}u_{1} + u_{2}$$

$$u_{1} = a_{1}u_{2} + u_{3}$$

$$u_{2} = a_{2}u_{3} + u_{4}$$

$$\vdots$$

$$u_{n-2} = a_{n-2}u_{n-1} + u_{n}$$

$$u_{n-1} = a_{n-1}u_{n}$$

In this case, there are n division steps. We have that $u_0 > u_1 > u_2 \cdots > u_n$ and $u_n = \gcd(u, v)$.

• The Fibonacci numbers are defined recursively, where $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$. We can also find a closed form expression,

$$F_n = \frac{\alpha^n - \beta^n}{\sqrt{5}}$$

where $\alpha = \frac{1+\sqrt{5}}{2}$ and $\beta = \frac{1-\sqrt{5}}{2}$.

If we note that $|\beta| < 1$, we can rewrite the expression as

$$F_n = \frac{\alpha^n - \beta^n}{\sqrt{5}} = \frac{\alpha^n}{\sqrt{5}} - \frac{\beta^n}{\sqrt{5}} \sim \frac{\alpha^n}{\sqrt{5}} = \theta(\alpha^n).$$

2 Euclidean Algorithm: Worst-Case Analysis

First we bound n as a function of u.

Lemma 2.1 (4.2.1 in text). Let there be integers u > v > 0 such that the Euclidean algorithm on input (u, v) performs n division steps. Then $u \ge F_{n+2}$ and $v \ge F_{n+1}$.

Proof. We shall use induction to prove this lemma:

- Base Case: Let n=1. Then $u=a_0v$. Since $u_0>u_1>0$, we must have $u_1\geq 1$ and $u_0\geq 2$. Therefore, $u=u_0\geq F_3=F_{n+2}$ and $v=u_1\geq F_2=F_{n+1}$, as required.
- Inductive Step: Suppose the lemma holds true for $1 \le n < N$,

$$N-1 \begin{cases} u_0 = a_0 u_1 + u_2 \\ u_1 = a_1 u_2 + u_3 \\ \vdots \\ \vdots \\ u_{N-1} = a_{N-1} u_N. \end{cases}$$

By our inductive hypothesis,

$$\begin{aligned} u_1 &\geq F_{N-1+2} = F_{N+1} \\ u_2 &\geq F_{N-1+1} = F_N \\ u_0 &\geq u_1 + u_2 \geq F_{N+1} + F_N = F_{N+2}. \end{aligned}$$

Hence, $u = u_0 \ge F_{N+2}$ and $v = u_1 \ge F_{N+1}$. The lemma follows by induction.

Corollary 2.2. In the Euclidean algorithm, the number of division steps is $n = O(\lg u)$.

Proof. According to the lemma, $u = u_0 \ge F_{n+2}$, hence

$$u \ge \frac{\alpha^{n+2} - \beta^{n+2}}{\sqrt{5}} = \Omega(\alpha^n)$$

so, taking \log_{α} of both sides, we get

$$log_{\alpha}u = \Omega(n)$$

and hence,

$$n = O(\lg u)$$
.

Observation 2.3 (Exercise 4.5 in text). For every i satisfying $1 \le i \le n-1$, we have that

$$a_i a_{i+1} \cdots a_{n-1} < u_i$$
.

Proof. We can prove this by using induction from i = n - 1 down to 0.

- Base Case: If i = n 1, then $u_{n-1} = a_{n-1}u_n$, so, clearly $a_{n-1} \le u_{n-1}$.
- Inductive Step: Suppose $a_{i+1}a_{i+2}\cdots a_{n-1} \leq u_{i+1}$. We know that

$$u_i = a_i u_{i+1} + u_{i+2} \ge a_i u_{i+1}$$

and, using our inductive hypothesis,

$$u_i \geq a_i u_{i+1} \geq a_i a_{i+1} a_{i+2} \cdots a_{n-1}$$

as required.

Corollary 2.4. The bit complexity of the Euclidean algorithm is $O((\lg u)(\lg v))$.

Proof. The bit complexity can be written

$$O\left(\sum_{0 \le i \le n-1} (\lg a_i) (\lg u_{i+1})\right) = O\left((\lg v) \sum_{0 \le i \le n-1} \lg a_i\right)$$

$$= O\left((\lg v) \left(n + \sum_{0 \le i \le n-1} \log_2 a_i\right)\right)$$

$$= O\left((\lg v) \left(\lg u + \log_2 \prod_{0 \le i \le n-1} a_i\right)\right)$$

$$= O\left((\lg v) (\lg u + \log_2 u)\right)$$

$$= O\left((\lg v) (\lg u)\right).$$

3 Extended Euclidean Algorithm

Theorem 3.1. Suppose that $u, v, a, b, c, d \in \mathbb{Z}$, $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, and $M \cdot \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$. If $det(M) = \pm 1$, then gcd(u, v) = gcd(x, y).

Proof. We shall consider the two values for det m separately:

• First, suppose det(M) = 1. Then ad - bc = 1. Also, x = au + bv and y = cu + dv. Clearly, $gcd(u, v) \mid gcd(x, y)$.

Now,
$$M^{-1} = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
, so $M^{-1} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} u \\ v \end{bmatrix}$.

Since det $M^{-1}=1$, the same argument yields $\gcd(x,y)\mid\gcd(u,v)$. Hence, $\gcd(x,y)=\gcd(u,v)$.

• Now consider the case where det(M) = -1 and let $\widetilde{M} = \begin{bmatrix} -a & -b \\ c & d \end{bmatrix}$.

$$\text{Then } \widetilde{M} \cdot \left[\begin{array}{c} u \\ v \end{array} \right] = \left[\begin{array}{c} -x \\ y \end{array} \right] \text{ and } \det(\widetilde{M}) = 1, \text{ so } \gcd(u,v) = \gcd(-x,y) = \gcd(x,y).$$

The Euclidean algorithm maps $(u_i, u_{i+1}) \longrightarrow (u_{i+1}, u_{i+2})$ by computing

$$u_i = a_i u_{i+1} + u_{i+2}$$
.

If we consider the matrix multiplication

$$\left[\begin{array}{cc} a_i & 1 \\ 1 & 0 \end{array}\right] \left[\begin{array}{c} u_{i+1} \\ u_{i+2} \end{array}\right] = \left[\begin{array}{c} u_i \\ u_{i+1} \end{array}\right],$$

or the matrix multiplication

$$\begin{bmatrix} 0 & 1 \\ 1 & -a_i \end{bmatrix} \begin{bmatrix} u_i \\ u_{i+1} \end{bmatrix} = \begin{bmatrix} u_{i+1} \\ u_{i+2} \end{bmatrix},$$

we can see that they both preserve the greatest common divisor, since

$$\det\left(\left[\begin{array}{cc}a_i & 1\\1 & 0\end{array}\right]\right) = \det\left(\left[\begin{array}{cc}0 & 1\\1 & -a_i\end{array}\right]\right) = -1.$$

Now, if we define

$$M_k = \left[egin{array}{cc} a_0 & 1 \ 1 & 0 \end{array}
ight] \left[egin{array}{cc} a_1 & 1 \ 1 & 0 \end{array}
ight] \cdots \left[egin{array}{cc} a_k & 1 \ 1 & 0 \end{array}
ight] = \left[egin{array}{cc} b_k & c_k \ d_k & e_k \end{array}
ight],$$

we can see that, since $\det(M_k) = \pm 1$,

$$\left[\begin{array}{c} u_0 \\ u_1 \end{array}\right] = M_k \left[\begin{array}{c} u_{k+1} \\ u_{k+2} \end{array}\right]$$

and

$$\left[\begin{array}{c} u_{k+1} \\ u_{k+2} \end{array}\right] = M_k \left[\begin{array}{c} u_0 \\ u_1 \end{array}\right].$$

We can define

$$M_k^{-1} = (-1)^{k+1} \begin{bmatrix} e_k & -c_k \\ -d_k & b_k \end{bmatrix}$$

And, applying it to the two numbers we wish to find the greatest common divisor of, we get

$$\left[\begin{array}{c} u_n \\ 0 \end{array}\right] = M_{n-1}^{-1} \left[\begin{array}{c} u_0 \\ u_1 \end{array}\right]$$

or, more specifically,

$$\gcd(u,v) = u_n = (-1)^n e_{n-1} u_0 + (-1)^{n+1} c_{n-1} u_1.$$

Theorem 3.2 (4.3.1 in text). Let $u, v, c \in \mathbb{Z}$. Then au + bv = c has a solution $a, b \in \mathbb{Z}$ if and only if $gcd(u, v) \mid c$.

Proof. Assume $gcd(u, v) \mid c$. Then c = gcd(u, v)k for some $k \in \mathbb{Z}$, so we can just multiply the above equation by k, getting

$$\gcd(u,v)k = c = ((-1)^n e_{n-1}k) u + ((-1)^{n+1}c_{n-1}k) v.$$

Now, assume au + bv = c has a solution $a, b \in \mathbb{Z}$. Clearly $gcd(u, v) \mid au$ and $gcd(u, v) \mid bv$, hence gcd(u, v) must divide their sum, c.

Extended Euclid
$$(u, v)$$

$$M \leftarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$u' \leftarrow u$$

$$v' \leftarrow v$$

$$i \leftarrow 0$$

$$\mathbf{while} \ (v' \neq 0) \ \mathbf{do}$$

$$q \leftarrow \left\lfloor \frac{u'}{v'} \right\rfloor$$

$$r \leftarrow u' - qv'$$

$$M \leftarrow M \begin{bmatrix} q & 1 \\ 1 & 0 \end{bmatrix}$$

$$(u', v') \leftarrow (v', r)$$

$$i \leftarrow i + 1$$

$$\mathbf{return} \ (u', (-1)^i M_{22}, (-1)^{i+1} M_{12})$$

Figure 1: Pseudocode for the Extended Euclidean algorithm

3.1 The Extended Euclidean Algorithm

The pseudocode for the Extended Euclidean algorithm is in Figure 3.1.

Example 3.3.
$$u_0 = 216, u_1 = 183, n = 5, \text{ and } (a_0, a_1, a_2, a_3, a_4) = (1, 5, 1, 1, 5).$$

$$u_0 = 216 \quad M_{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$u_1 = 183 \quad M_0 = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

$$u_2 = 33 \quad M_1 = \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 5 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 6 & 1 \\ 5 & 1 \end{bmatrix}$$

$$u_3 = 18 \quad M_2 = \begin{bmatrix} 6 & 1 \\ 5 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 7 & 6 \\ 6 & 5 \end{bmatrix}$$

$$u_4 = 15 \quad M_3 = \begin{bmatrix} 7 & 6 \\ 6 & 5 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 13 & 7 \\ 11 & 6 \end{bmatrix}$$

$$u_5 = 3 \quad M_4 = \begin{bmatrix} 13 & 7 \\ 11 & 6 \end{bmatrix} \begin{bmatrix} 5 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 72 & 13 \\ 61 & 11 \end{bmatrix}$$

$$u_6 = 0 \quad M_4^{-1} = \begin{bmatrix} -11 & 13 \\ 61 & -72 \end{bmatrix}$$

And, we have our answer:

$$(-11) \cdot 216 + (13) \cdot 183 = 3.$$

Corollary 3.4 (4.3.3 in text). We can find integers a and b such that $au + bv = \gcd(u, v)$ in $time\ O((\lg u)(\lg v))$.

4 Next Time

The next class will cover Section 4.4 (Continuants) and Section 4.5 (Continued Fractions) in the text.