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Abstract

Today’s first topic is parallel complexity, which is a continuation of the last day’s topic. The second
topic is calculating the greatest common divisor. Some results about the greatest common divisor
are given including the Euclidean algorithm.

1 Parallel Complexity

Parallel algorithms use more hardware simultaneously to reduce time complexity. We will use
boolean circuits as a model.

Example 1.1 Consider the following binary operation.

cl cO
al a0
+ bl b0

Writing this in terms of boolean expressions, we have:

Sp = (CL()/\ ~ bg) V (N ag N\ bo),

Ch = Qo /\b(],

s§1 = (al/\bl/\CU)\/(al/\Nbl/\NCU)\/(N al/\bl/\ch)\/(N al/\Nbl/\CU),
S9 = C = (a1 A bl) V (a1 AN Co) V (bl AN Co).

We can represent these kind of relations with directed acyclic graphs (cf. Figure 1). Each vertex
has indegree 0, 1, or 2. Vertices of indegree 0 are called inputs. The other vertices are labeled with
boolean operations chosen from the set {~, VV, A}. Also, some vertices are distinguished as outputs.

Such a graph is called a boolean circuit. If it has n inputs and m outputs, it will represent a
function from {0, 1}" to {0, 1}™. Given an input, signal propagation occurs in the circuit until an
output is obtained.

Usually we can measure the cost of a boolean circuit by two parameters, size and depth. Size
is the number of nodes in graph, it describe the space complexity. Depth is the longest path from
an input to an output. It reflects the propagation delay of gates in the circuit. For example, the
circuit in Figure 1 has size 28 and depth 5.
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To discuss functions whose arguments have varying length, what we need is a family of circuits.
This is a sequence of circuits Cy, Ci, Co, ..., where C), takes n inputs. This family of circuits
defines a function:

f:40,1}" — {0,1}".

A circuit family Cy, Cy, Cs, . .. is log-space uniform if there is a deterministic (Turing machine)
algorithm that takes inputs 1™ and returns a representation of C,, using only O(logn) space.

The complexity class NC consists of functions f : {0,1}* — {0, 1}* such that for each f there
is a log-space uniform family of circuits to compute it and there are polynomials p and g such that
Cy, has size < O(p(n)) and depth < O(q(lgn)).

Example 1.2 Addition can be accomplished in linear size and O(lgn) depth. This is based on a
technique called carry look-ahead. The proof of this is left as an exercise (see Exercise 27 in [1]).

It is believed by complexity theorists that NC is strictly contained in N P.

2 Greatest Common Divisor

The greatest common divisor of two integers u and v, written d = ged(u, v), is defined by these
properties:

1. If u # 0 and v # 0, then d > 0;

2. d|u and d|v;

3. If e > 0, e|u, and e|v, then e|d; and
4. ged(u, 0) = ged(0, u) = |ul.

The least common multiple of two integers u and v, written f = lem(u,v), is defined by these
properties:

1. fu# 0 and v # 0, then f >0

2. u|f and v|f;

3. If e > 0,ule, and v|e, then fle; and
4. lem(u,0) = lem(0,u) = 0.

It is interesting to note the relationship between the greatest common divisor and the least
common multiple. In particular, if (u,v) # (0, 0), then

|uv]
1 N i WY
cm(u, v) ged(u, 0)

Theorem 1 For every c,u,v € Z, ged(u,v) = ged(u, v + cu).
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Proof. If u =0, then obviously ged(u,v) = ged(u, v + cu).
Now suppose u # 0. Let d = ged(u,v). If v =0, then
d = ged(u,v) = |u| = ged(u, cu) = ged(u, v + cu).

Finally, suppose v # 0. In this case, d > 0, d|u and s|(v + cu). Suppose e > 0, e|u and e|(v + cu).
Then e|(v 4+ cu — cu), i.e., elv. From elu and e|v we see that e|d. So, by definition, we have
d = ged(u, v+ cu). O

Corollary 1 ([1, p. 67]) For all u,v € Z, gcd(u,v) = ged(v, u mod v).

Proof. If v = 0, then w mod v = |u| and the conclusion is obviously true. If v # 0, then
umod v = u —v|2|. From the above theorem, it is easy to get this corollary. O

The above Corollary implies a method for calculating ged(u, v) known as the Euclidean algo-
rithm.

EucLiD(u, v)

1 ifv=0
2 then return |u|
3 else return EucLiD(v,u mod v)

Example 2.1 EucLip(216,183).

(183,216 mod 183) (183,33)
(33,183 mod 33) (33, 18)
(18,33mod 18) = (18,15)
(15, 18 mod 15) (15, 3)
(3,15 mod 3) (3,0)

EucLip(3,0) returns 3, so ged(216, 183) = 3. In this example, we get the following sequence:
216 >183>33>18>15>3 > 0.

The time complexity of the Euclidean algorithm is closely related to the speed at which this
sequence approaches 0.

2.1 Crude Complexity Analysis

We can devise a crude complexity analysis of the Euclidean algorithm as follows. First, we claim
that after any two consecutive divisions, the number in the second slot decreases by at least a
factor of %

Each division in the Euclidean algorithm requires O((lgu)(lgv)) bit operations. The number
of divisions is O(max{lgu,lgv}). Hence, the total bit complexity is no more than

O(max{lgu,lgv})(lgu)(lgv)).
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2.2 Refined Complexity Analysis

Assume u > v > 0. We want to keep track of the numbers occurring during the execution of the
algorithm.
Let ug = u, u1 = v, and

Uy = aguyl + us
up = aiu2 +usg
U2 = aU3 + Uy

Up—2 = Ap—2Unp—1+ Up
Up—-1 = Gp-1Un.
Obviously, ug > uy > ug > -++ > up_1 > up, and we have n division steps. First we bound n

as a function of u. Fibonacci numbers (which will be introduced next) gives the worst case time
complexity.

Fibonacci Numbers. Fibonacci numbers can be defined by the recursive relation:
F,=F, +Fn—2a
with initial values Fy = 0, F; = 1. It is known that

an_ﬁn

\/g )

where a = % and 3 = 1_2‘/5. Since |G| < 1, we have |3"| — 0 and hence,

F, =

Lemma 1 (4.2.11in [1]) Given the notation above, we have u > Fy1o and v > Fp41.

We will use this lemma to obtain our refined bit complexity of the Euclidean algorithm next
class meeting.
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