Scribe Notes for Algorithmic Number Theory Class 6—May 26, 1998 1

Scribe Notes for Algorithmic Number Theory
Class 6—May 26, 1998

Scribes: Lynn Jones, Nick Loehr, and Hussein Suleman

Abstract

This class continued the review of complexity theory. After reviewing Homework Assignment 1, we
defined the notions of many-to-one reductions, polynomial time reductions, and NP-completeness.
We discussed various complexity classes relating to time complexity, space complexity, and ran-

domized complexity, e.g., P, NP, EXPTIMFE, PSPACE, RP, BPP, and ZPP. At the end of
class, we started to discuss parallel complexity and Boolean circuits.

1 Homework Assignment 1

We started class by going over solutions to portions of the first homework assignment. Nick
presented the solution to problem 2, and Jeremy presented the solution to problem 3.

2 Reductions

Reductions are mechanisms that allow us to transform and compare instances of problems in terms
of computability and complexity. Informally, a reduction is a transformation that lets us solve one
problem using the solution to a known problem.

Definition 2.1. (Definition 3.4.1 in the text)

Suppose we have languages L1, Lo C ¥*. A reduction from L; to Ly is a computable function
f:¥* — ¥* such that x € L; if and only if f(xz) € Ly. This function maps representations of Lq
onto representations of L.

Thus, being able to solve the language recognition problem for Lo allows us to solve the recog-
nition problem for L;. This relationship is usually denoted

Ly < Lo.

We can interpret this as stating that the problem posed by L; is no harder than that of Ls.

In complexity theoretic frameworks, it is desirable to have reduction functions that are com-
putable in polynomial time. When this is the case, we denote the relationship between the two
languages as

L <P L,.

Here P signifies that the reduction is computable in polynomial time, and m signifies that it is a
many-to-one reduction. If we have a polynomial time algorithm for Lo, then we obtain a polynomial
time algorithm for L; since the reduction is computable in polynomial time, and the composition
of polynomials is a polynomial.

2 Class 6—May 26, 1998 Scribe Notes for Algorithmic Number Theory

3 NP-completeness

Definition 3.1. (Definition 3.4.2 in the text)
A language L is said to be NP-complete if:

1. Le NP.
2. For every M € NP, M <P L.

Intuitively, the N P-complete languages constitute the hardest languages in NP, in the sense
that a polynomial time algorithm for recognizing any N P-complete language could be combined
with a polynomial time reduction to give a polynomial time algorithm recognizing an arbitrary
language in N P. Examples of N P-complete problems include satisfiability, the traveling salesman
problem, and the Hamiltonian circuit problem.

4 Randomized Complexity

It is of interest to consider polynomial time algorithms that are provided with an unbiased source
of random bits. A randomized algorithm uses a random “guess” consisting of r random bits.
Essentially, the algorithm selects a random integer uniformly from the set {0,1,2,...,2" —1}. Of
course, we still require that r, the length of the guess in bits, be bounded by p(lgz) for some
polynomial p.

Table 1 lists three complexity classes associated with randomized algorithms. In the table, L
represents the language being recognized and x represents an input string.

Table 1: Complexity Classes for Randomized Algorithms.

Complexity | Errors Algorithm | Description

Class Name

RP one-sided | Monte Carlo | Algorithm always rejects when x & L;
it accepts with probability > 1/2 when z € L.

BPP two-sided | Atlantic City | If z ¢ L, algorithm rejects with probability > 3/4;
if z € L, algorithm accepts with probability > 3/4.

7ZPP none Las Vegas Algorithm runs until it finishes with answer;
algorithm has expected polynomial running time.

Note the distinction between nondeterministic algorithms on the one hand and randomized
algorithms on the other. Each possible execution path in a nondeterministic algorithm to recognize
L takes an instance z and a guess y and either accepts or rejects x. If x is indeed in L, there may
be only one “right” guess y that causes the algorithm to accept. In contrast, if there are “many”
different valid guesses that will lead the algorithm to accept, a randomized algorithm to recognize
L may succeed. Note that the probability that a randomized algorithm will succeed or fail should
depend only on the random bits it receives, not on the particular instance z.

The success probabilities appearing in Table 1 are somewhat arbitrary, since the probability of
success for any randomized algorithm may be improved by running the algorithm multiple times
and taking a majority vote.

Scribe Notes for Algorithmic Number Theory Class 6—May 26, 1998 3

5 Space Complexity

In analyzing complexity of a class of algorithms, we also consider the physical space required to
carry out the computation. This space, whether measured as cells of some Turing Machine tape or
registers in RAM, is the number of units needed to represent the encoding of the state of execution
of an algorithm on a particular-sized instance.

Think of memory registers Ri, Ro, ..., holding integers x1, x2, . . ., in some random access ma-
chine. Assume that for a particular input of size n, that R,, is the highest numbered cell used at
any time by algorithm A on any input of size n. Then we “charge” A for using cells R; through
R, (even if some cells in between are not used).

Consider cell R;. Let x; be the largest integer (in absolute value) that is ever stored in R;
during execution of algorithm A on any input of size n. Thus, the encoding of z; is larger than the
encoding of any other value that will be stored in register R;. Then we “charge” A a cost 1g(x;)
for each cell R;.

Using these conventions, we define the space consumption S(n) for algorithm A on inputs of
length n to be

m
S(n) =Y lg()
i=1
Just as we asked if a language can be recognized in polynomial time, we also want to know if it
can be recognized using polynomial space; i.e., is S(n) < p(n) for some polynomial p? If so, then
algorithm A has polynomial space complexity.

Previous language classes we discussed were categorized by their time complexity. We now
introduce the complexity class, PSPACE, the set of languages that have algorithms that can execute
in polynomial space. This class contains all of the time complexity classes described so far, and
in fact, even some exponential time complexity problems can be solved in polynomial space. Just
as we have N P-complete problems, we also have PSPACE-complete problems that include, for
example, determining the winner of two-player games like chess (suitably generalized to n x n
boards, of course).

6 Summary of Complexity Classes

Complexity classes provide general categorizations for the complexity of algorithms. Figure 1 shows
the conjectured relationships among some common complexity classes pertinent to this course. In
what follows, we assume P # N P.

e P is the set of all problems with polynomial time deterministic algorithms. The problems are
usually formulated as decision problems or language recognition problems. Problems within
this category are called tractable since feasible algorithms exist to solve them.

e NP is the set of all problems with polynomial time nondeterministic algorithms. The sub-
class NP-complete refers to those problems within NP which are as hard as any other in
NP. Since no efficient algorithms for solving these problems are known, they are termed
intractable. Examples of languages in NP which are not known to be in P are PRIMES;,
COMPOSITES and GRAPH-ISOMORPHISM.

4 Class 6—May 26, 1998 Scribe Notes for Algorithmic Number Theory

PSPACE
EXPTIME

Figure 1: Relationships among complexity classes

e PSPACE is the set of all languages that can be recognized with algorithms requiring space
of polynomial order. The subclass of PSPA CE-complete problems consists of those problems
within PSPACE that are as hard as any other in PSPACE. Some game theory problems fall
in this category. Note that PSPACE can contain within it problems with exponential time
complexity but polynomial space complexity.

e EXPTIME is the set of all languages that can be recognized with algorithms requiring at
most exponential time complexity.

7 Parallel Complexity

We want to use multiple, independently operating processors together to solve a problem, with
the hope of speeding up execution. A simple model of parallel processing is the Boolean circuit or
combinational circuit consisting of AND (A), OR (V) and NOT (~) gates.

Example 7.1. The addition of two binary numbers can be represented by Boolean formulae.

C1 Co

ap aop
+ b1 by
S92 S1 So

The carry bits, ¢; and the result bits, s; can be determined by these formulae:

Scribe Notes for Algorithmic Number Theory Class 6—May 26, 1998 5

so = (apA ~bg)V (~ agAbp)

co = agAbg

s1 = (ag Aby Acg)V (@A ~biA ~¢o) V (~ay AbiA ~co) V (~ a1~ by Acp)
c1 = (a1 Ab1) V(a1 Acg)V (b1 A cp)

ss = ¢

Note that the formula for s; is essentially the parity of the operands. Note too that ¢y is also
TRUE if all three of the operands are TRUE, but if all three are, then certainly two of them are.

8 Next Class

Our next class will continue with this example, complete the discussion of complexity theory, and
begin the discussion of greatest common divisors.

References

[1] E. BACH AND J. SHALLIT, Algorithmic Number Theory, The MIT Press, Cambridge, Mas-
sachusetts, 1996.

[2] T. H. CorMEN, C. E. LEISERSON, AND R. L. RIVEST, Introduction to Algorithms, The MIT
Press, 1990.

