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Abstract

Today we introduce complexity theory. We show how a problem can be represented by a language,
and we define the complexity classes P and N P.

1 Complexity Theory

Complexity theory is the study of problems and algorithms to solve those problems. The goal is to
classify problems into levels of difficulty. When problems are classified, it is possible to know which
problems are tractable, or computable using an acceptable amount of resources on a computer, or
intractable, those that cannot be computed using reasonable resources. To study a given problem
and its difficulty, three things are needed:

e a problem statement,
e a model of computation, that is, a description of a computing machine,

e and an algorithm to solve the problem for a given model of computation.

Figure 1 displays the connections between problems, models of computation, and algorithms to
obtain an understanding of the complexity for a problem.

In complexity theory, the term instance means the input to a problem. An algorithm takes an
instance and computes a solution using a given model of computation. The complexity of a problem,
obtained through analysis of algorithms to solve the problem, may focus on different resources used
by the algorithms. In this class, we are primarily concerned with time complexity, the number
of “steps” an algorithm requires to compute a solution. Also of interest is space complexity, the
number of “memory locations” used by an algorithm to compute a solution.

1.1 Input Size

The complexity of an algorithm is analyzed by comparing how algorithms use resources asymp-
totically. Usually, the complexity is in terms of worst case complexity, the maximum amount
of resources used by an algorithm asymptotically. The complexity is a function of the size of the
representation of an instance.

For the problems in this class, an instance will usually consist of numbers. The size of an
instance reflects the number of bits needed to represent the number. The text (pg. 41) designates
lgn to be the number of bits in the binary representation of the integer n. The function lgn is
defined as follows:
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Problem Model Of Computation
Arithmetic Turing Machines
GCD Random Access Machine
Factoring Boolean Circuits
Algorithm
Analysis
Complexity

Figure 1: Relations between problems, models of computation, and algorithms.

Operation ‘ Naive Complexity
atb lga +1gb
ax*b (Iga)(1gb)
a=qb+r | (lgq)(gb)

Table 1: (Table 3.1) Cost of arithmetic operations

1 _ 1, if n =0;
gn = 1+ |logy n], if n # 0.

A step in an algorithm corresponds to one bit operation. The boolean operations, and (A),
or (V), and not (~) each cost one step. Our fundamental operations are arithmetic operations so
we need to find the bit complexity of +, -, *, =+, and exponentiation. Exponentiation is explored
in Section 5.4, so we skip it for now. Table 1 from the text (pg. 43) gives the cost of the basic
arithmetic operations.

2 Languages and Complexity Classes
We would like to quantify how difficult a problem is to solve. Problems with different inputs and

outputs are hard to compare, so we restate the problems in such a way that comparing two problems
is easier. Our first simplification is to restrict the possible answers for a problem. A problem is a
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decision problem if the only answers to the problem are either YES or NO. Decision problems
are usually presented with a name, an instance, and a question to answer.

Example 2.1. Problem: PRIMES
Instance: A non-negative integer n.
Question: Is n a prime number?

Example 2.2. Problem: EVEN NUMBERS
Instance: An integer n.
Question: Is n an even integer?

Example 2.3. Problem: SATISFIABILITY
Instance: A set U of boolean variables and a collection C' of boolean clauses
over U.
Question: Is there a truth assignment of the variables in U such that every
clause in C' is true?

The second simplification is to define how input is encoded for an algorithm to solve a decision
problem. An alphabet, denoted X, is a set of symbols used to encode input. For this course, we will
use the alphabet ¥ = {0, 1, #}. A string is a sequence of symbols from . Examples of strings are
0110 and ##01#14#0. The set of all strings is X* = {\, 0, 1, #, 00,01, 04,10, 11, 1#, ...}, where A
represents the empty string. The length of a string z € ¥* is lg z, also denoted as |z|. A language
L is any subset L C ¥*. We can call the set of all instances that have a YES answer for a given
decision problem DP the language for DP.

Example 2.4. N is the set of instances for PRIMES. We can encode the instances in binary form
as {0,1,10,11,100,...}. The language of all instances that give a YES answer to PRIMES is

PRIMES = {10,11,101,...}
In this case, PRIMES is the language for PRIMES.

An algorithm that takes a string = as input and returns 1 if x € L and 0 otherwise accepts L.
We would like to classify languages and the algorithms that accept them. A set of languages is called
a complexity class. Placing languages into complexity classes is a way to help us understand
how difficult problems are.

2.1 Worst Case Complexity

The complexity of most interest in this course is time complexity, the number of steps an
algorithm takes before it halts. If A is an algorithm, we define T'(A, z) to be the number of bit
steps A takes on input z. The worst case time complexity 74(n) is the maximum number of
steps A uses for an input of length n; that is,

Ta(n) = max T(A, z).

n=lgz

Let A, B, C be three different algorithms to solve the same decision problem. These three algorithms
might have worst case time complexities T4(n) = O(n) (i.e., linear time), Tg(n) = O(n?) (i.e.,
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quadratic time), and T¢(n) = O(nlogn). Since we are using O, we cannot compare A, B, and C
definitely, although A is most likely to be the best algorithm to use in the worst case. If instead of
O, © had been used, we could conclude that A < C < B in the worst case.

A deterministic algorithm, A, computes in polynomial time if there is a polynomial, p, such
that T'a(n) = O(p(n)) (Definition 3.3.1, pg. 45).

Example 2.5. Let ADDITION = {0#40#0, 0#14#1, 14#0#1, 141410, 10#14#11, ...}, using # as
a separator. So 0#0#0 means 0 + 0 = 0. A YES instance for this problem looks like x =
m#n#(m+n). The length of an instance is lgx = lgm + 1gn +1g(m + n) + 2. Suppose algorithm
A recognizes ADDITION. Then Ty(lgz) = lgm + lgn + lg(m + n) + C, where C is constant
overhead. We can asymptotically bound the worst case time complexity by choosing p(y) = 2y.
Then Ta(lgz) < p(lgz).

The first complexity class is P.
P = {L|L is accepted by some deterministic polynomial time algorithm}.

P corresponds to efficiently (deterministically) solvable problems.

A nondeterministic algorithm is one in which choices are made nondeterministically, or by
guessing. If there is some collection of guesses for which the algorithm answers YES for input «z,
then the algorithm accepts = (pg. 46).

Example 2.6. Let COMPOSITES = {100,110, 1000, 1001,...}. A nondeterministic algorithm
takes input x and guesses two integers y and z. If £ = yz,y > 1, and z > 1, then the algo-
rithm accepts x.

The second complexity class is N P, defined on pg. 46 in the text.

NP = {L|there is a language S € P and a polynomial p such that z € L if
and only if there is some string y such thatlgy < p(lgz)and(z,y) € S}.

Clearly P C N P. However, it is not known whether P # N P.
The complexity class co — N P is obtained by complementing the members of N P.

Example 2.7. COMPOSITES € NP, so PRIMES € co — NP. Note that it also turns out that
PRIMES € NP.



