Scribe Notes for Algorithmic Number Theory Class 4—May 21, 1998

Scribes: Jeremy Rotter, Yizhong Wang, and Wen Wang

Abstract

In this class we will finish the discussion of rings and cover some basic concepts related to fields.

1 Rings

In the previous class, a ring and its ideal were discussed. Suppose R is a ring and $I \subset R$ is an ideal. Then R/I is a factor ring.

Example 1.1. Let $R = \mathbb{Z}/(3)[X]$ and let $f(X) = 2X^2 + X + 1$. We can create a factor ring $I = R \cdot f(X)$ from the polynomial ring R. We can use the canonical representation of R/I = R/(f), namely

$$\{0, 1, 2, X, X+1, X+2, 2X, 2X+1, 2X+2\}.$$

Addition is the same as addition in R, e.g. (2X + 1) + (X + 2) = 0. Multiplication is the multiplication in $R \mod f$, e.g. $(2X + 1) \cdot (X + 2) = 2X^2 + X + X + 2 \mod f = X + 1$.

Example 1.2. Let $R = \mathbb{Z}$ and let $I = \{6i : i \in \mathbb{Z}\}$. I is an ideal in R, and we can create the factor ring $R/I = \mathbb{Z}/(6)$.

2 Fields

Definition 2.1. A commutative ring R is a *field* if $R - \{0\}$ is an abelian group with respect to multiplication.

Some examples of fields are \mathbb{Q} , \mathbb{R} , \mathbb{C} , and $\mathbb{Z}/(p)$. It is easy to prove that $\mathbb{Z}/(p)$ is a field. Clearly multiplication is commutative mod p. Also, $\mathbb{Z}/(p)$ is closed under multiplication and $\overline{1}$ is the identity mod p, so all it needs to be an abelian group (and therefore a commutative ring) is an inverse for all elements. By Fermat's theorem (2.1.3) [1], we know that any element $a \in \mathbb{Z}/(p)$ will have inverse $a^{p-2} \in \mathbb{Z}/(p)$, hence $\mathbb{Z}/(p)$ is a field.

Some non-examples of fields are \mathbb{Z} , R[X], and $\mathbb{Z}/(n)$ where n is not prime. For a non-prime n, $\mathbb{Z}/(n)$ would possess zero-divisors, and hence $\mathbb{Z}/(n)$ would not be a group with respect to multiplication. For example, in $\mathbb{Z}/(6)$, $\bar{2} \cdot \bar{3} = \bar{0} \notin \mathbb{Z}/(6) - \{\bar{0}\}$. $\mathbb{Z}/(6) - \{\bar{0}\}$ is not closed under multiplication, and therefore is not a group. Hence, $\mathbb{Z}/(6)$ is not a field.

2.1 Vector Spaces

Definition 2.2. \mathbb{V} is a *vector space* over a field \mathbb{F} if + is defined on \mathbb{V} and \mathbb{V} is an abelian group under addition. \mathbb{F} acts on \mathbb{V} by scalar multiplication, which satisfies

• $: \mathbb{F} \times \mathbb{V} \to \mathbb{V}$; and

• For $a, b \in \mathbb{F}$ and $v_1, v_2 \in \mathbb{V}$,

$$a \cdot v_1 + a \cdot v_2 = a \cdot (v_1 + v_2)$$

and

$$a \cdot v_1 + b \cdot v_1 = (a+b) \cdot v_1.$$

Facts

1. For every vector space \mathbb{V} over field \mathbb{F} , there is a basis $B \subseteq \mathbb{V}$ such that every element of \mathbb{V} can be written uniquely as a linear combination of elements of B, e.g. for $V \in \mathbb{V}$,

$$V = \sum_{b \in B} v_b \cdot b,$$

where all but a finite number of v_b are zero.

Examples

- $\mathbb{E}^n = \{(r_1, r_2, \dots, r_n) : r_i \in R\}$ is a vector space over R, $\{(1, 0, \dots, 0), (0, 1, \dots, 0), \dots, (0, 0, \dots, 1)\}$ is a basis for \mathbb{E}^n .
- $\mathbb{F}[x]$ is a vector space over \mathbb{F} , $\{1, x, x^2, x^3, \dots, \}$ is a basis for $\mathbb{F}[x]$.

Any two bases of a vector space \mathbb{V} have the same cardinality, called the *dimension* of \mathbb{V} .

2. If U and V are finite dimensional vector spaces, with dimensions m and n, respectively, then any linear function

$$T:U\longrightarrow V$$

can be represented by an $n \times m$ matrix with respect to fixed bases of U and V.

Example 2.3. Let $T: E^2 \to E^3$ be a linear mapping. In this case, m=2 and n=3. We can represent T with the 3×2 matrix

$$\begin{bmatrix} 3.5 & 7 \\ 50.7 & 0 \\ 3.3 & \frac{11}{3} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} r \\ s \\ t \end{bmatrix}.$$

2.2 Finite Fields

Definition 2.4. A field containing a finite number of elements is called a *finite field*.

Facts

- 1. There is a positive integer n such that na = 0 for all a in the field. The smallest such n is called the *characteristic* of the field.
- 2. The characteristic of a finite field \mathbb{F} is always prime.
- 3. Let \mathbb{F} be a field containing m elements with characteristic p. Then \mathbb{F} is a vector space over $\mathbb{Z}/(p)$.

Table 1: Powers of X in $\mathbb{Z}/(3)[x]/(f)$.

4. Let d be the dimension of \mathbb{F} over $\mathbb{Z}/(p)$, and let $\{b_1, b_2, ..., b_d\}$ be a basis. Then

$$\mathbb{F} = \left\{ \sum_{i=1}^{d} a_i b_i : a_i \in \mathbb{Z}/(p), i = 1, 2, ..., d \right\}.$$

Hence $|\mathbb{F}| = p^d = m$.

Example 2.5. Choose $\alpha \in \mathbb{F} - \{0\}$. The set $A = \{\alpha^i : i \geq 0\}$ is finite. A spans a sub-vector space \mathbb{F}' of \mathbb{F} . We can find the largest integer r such that $1, \alpha, \alpha^2, ..., \alpha^{r-1}$ are linearly independent. (This implies that $1, \alpha, \alpha^2, ..., \alpha^{r-1}, \alpha^r$ are linearly dependent.) Clearly $r \leq d$ (actually, r|d). \mathbb{F} has dimension r and basis $\{1, \alpha, \alpha^2, ..., \alpha^{r-1}\}$. \mathbb{F}' is a subfield of \mathbb{F} . In fact, \mathbb{F}' is the smallest subfield of \mathbb{F} that contains α . We have $\mathbb{Z}/(p) \subset \mathbb{F}' \subset \mathbb{F}$. \mathbb{F} is also a vector space over \mathbb{F}' . By the choice of r, we know there exist $a_{r-1}, a_{r-2}, ..., a_1, a_0 \in \mathbb{Z}/(p)$ such that

$$\alpha^{r} + a_{r-1}\alpha^{r-1} + \dots + a_{1}\alpha + a_{0} = 0.$$

This implies that

$$f_{\alpha}(X) = X^{r} + a_{r-1}X^{r-1} + \dots + a_{1}X + a_{0} \in \mathbb{Z}/(p)[X]$$

is the minimal polynomial of α over $\mathbb{Z}/(p)$ and is irreducible. Actually, $\mathbb{Z}/(p)[X]/(f_{\alpha}) \cong \mathbb{F}'$.

In order to get a finite field of characteristic p, choose an irreducible polynomial f over $\mathbb{Z}/(p)$. Then, adjoin a root of f to $\mathbb{Z}/(p)$ to get $\mathbb{Z}/(p)[\alpha]$.

Example 2.6. Let p = 3 and let $f = X^2 + 2X + 2 \in \mathbb{Z}/(3)[X]$. Then f is irreducible over $\mathbb{Z}/(3)$. In $\mathbb{Z}/(3)[x]/(f) - \{0\}$, there are 8 distinct elements, which can be generated by X, as can be seen in Table 1. To understand Table 1 better, consider $(2X + 1) \cdot X$:

$$(2X+1) \cdot X = 2X^2 + X - 2f = 2X^2 + X - (2X^2 + X + 1) = -1 = 2$$

From Table 1, we can see that $\mathbb{Z}/(3)[x]/(f) - \{0\}$ is a cyclic group with respect to multiplication.

Facts

- 1. $\mathbb{F}^* = \mathbb{F} \{0\}$ is a cyclic group of order $p^d 1$.
- 2. For every $a \in \mathbb{F}^*$, $a^{p^d-1} = 1$.
- 3. For every $a \in \mathbb{F}$, $a^{p^d} = a$.

4. The Frobenious map on \mathbb{F} : $\tau(a) = a^p$ is a linear function on \mathbb{F} of characteristic p that fixes $\mathbb{Z}/(p)$.

To see that the Frobenious map fixes $\mathbb{Z}/(p)$, notice that for any $a \in \mathbb{Z}/(p)$, $\tau(a) = a^p = a * a^{p-1}$, but by Fermat's Theorem, $a^{p-1} = 1$ in $\mathbb{Z}/(p)$, so $a^p = p$, and we have $\tau(a) = a$ for any $a \in \mathbb{Z}/(p)$.

To see that the Frobenious map is linear, let $\{1, \alpha, \alpha^2, ... \alpha^{d-1}\}$ be a basis for \mathbb{F} over $\mathbb{Z}/(p)$. Then for any $a \in \mathbb{F}$,

$$a = \sum_{i=1}^{d-1} a_i \alpha^i,$$

where $a_i \in \mathbb{Z}/(p)$. So

$$a^{p} = \left(\sum_{i=1}^{d-1} a_{i} \alpha^{i}\right)^{p} = \sum_{i=1}^{d-1} a_{i}^{p} \alpha^{ip}$$

But $a_i^p = a_i$ (since τ fixes $\mathbb{Z}/(p)$), so $\tau(a) = \sum_{i=1}^{d-1} a_i \alpha^{ip}$. From this, it is easy to see that, for any $k \in \mathbb{Z}/(p)$, $\tau(ka) = k\tau(a)$, i.e., τ is linear.

2.3 Field Extensions

Definition 2.7. If $K \subseteq L$ are fields, L is called an *extension* of K.

Definition 2.8. If L is finite dimensional over K, then L is called a *finite extension* and the dimension of L over K is the degree of the extension, denoted by [L:K].

Choose an irreducible polynomial f of degree d over K, and let α be a root of the polynomial. Then $K(\alpha)$ is a field extension of degree d. Note that $K(\alpha) \cong K[x]/(f)$.

Example 2.9. Let $K = \mathbb{Q}$, then $L = \mathbb{Q}(\sqrt{2})$ is a degree 2 extension of \mathbb{Q} . In this case, the irreducible polynomial is $f_{\sqrt{2}}(x) = x^2 - 2$. Notice that L is a vector field over K, with basis $\{1, \sqrt{2}\}$. With this basis, every element in L can be written as $a + b\sqrt{2}$ and the multiplication in L is

$$(a + b\sqrt{2})(c + d\sqrt{2}) = (ac + 2bd) + (ad + bc)\sqrt{2}.$$

3 Next Time

In the next class we will begin to discuss complexity theory, from Chapter 3 in the book.

References

[1] E. Bach and J. Shallit, *Algorithmic Number Theory*, The MIT Press, Cambridge, Massachusetts, 1996.