Scribe Notes for Algorithmic Number Theory Class 3—May 20, 1998 1

Scribe Notes for Algorithmic Number Theory
Class 3—May 20, 1998

Scribes: Scott A. Guyer, Duxing Cai, and Degong Song

Abstract

Algebraic structures such as groups, rings, and fields are useful to the study of number theory.
Both groups and rings are reviewed covering material from Sections 2.8.1 through 2.8.2 in [1]. The
topic of fields is left for the next class meeting.

1 Groups

A group (S,0) is a non-empty set S with an associative binary operation o such that there is
an identity, and inverses exist for every element in the set. Groups can be written additively or
multiplicatively. Given a group G and two elements a,b € G, notation for both additive and
multiplicative groups are shown in the following table.

\ | Additive Multiplicative |

operation | a + b a-b
identity 0 1
inverse —a a !
powers ka ak

Example 1.1 The integers modulo n, denoted Z/(n), represent a group under addition. In par-
ticular,

Z/(n)={0,1,...,n—1}
where 7 is the set of integers congruent to i modulo n.

If the group operation is commutative, we call that group abelian. Two important types of
groups are vector spaces and cyclic groups.

1.1 Vector Spaces

A Fuclidean space over the set of reals R is an example of a vector space that is a group. In
particular, for the Cartesian space E3 = R x R x R, if we define the addition operation on E3 by

(a1, a2,a3) + (b1,b2,b3) = (a1 + b1, a2 + by, a3+ b3),

then (E3, +) forms a group.
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1.2 Cyclic Groups

We say that a group G is cyclic if there exists an element g € G such that
G = {¢*:kez}.

There are two flavors of cyclic groups (and for groups in general), infinite and finite. Infinite cyclic
groups are isomorphic (denoted by =2, see Section 2.8.1 in [1] for a definition) to (Z,+) and have
the property that g° # g/ for all integers i # j and no positive power of g is equal to 1. In contrast,
for every finite cyclic group, there exists a positive integer n such that g" = 1 and g¢¢ # 1 for
1 <i < n. In this case, the group is isomorphic to Z/(n).

Example 1.2 The group Z/(5) = {0, 1, 2, 3,4} is a finite cyclic group. It is easy to see that there
is a single element that generates the group. Consider the element 2.

2+2 = 4
442 =1
1+2 = 3
3+2 = 0
0+2 = 2

and the cycle repeats.

1.3 Decomposition and Construction of Groups

Groups can be formed from other groups by taking subgroups, factor groups, or direct products.

1.3.1 Subgroups

Given a group G, aset H C G is called a subgroup if H itself is a group (under the same operation
as G).

Example 1.3 Consider G = Z/(12). Let H = {k3 : k € Z}. Then H = {0, 3,6,9} is a subset
of G. Furthermore, H is the cyclic group generated by 3 and so H is a subgroup of G.

1.3.2 Factor Group

Let G be an abelian group and H a subgroup of G. We define an equivalence relation on G with
respect to H by: for all g1, g2 € G,

g1=g2 (mod H)

if and only if g1 — go € H. The equivalence classes induced by this relation are called cosets of H
in G. The set composed of these equivalence classes is the factor group G/H. G/H is an additive
group with cardinality |G|/|H]|.
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Example 1.4 Let G =7/(12) and H = {0, 3,6,9}. G/H is the factor group with elements

0O+H = H
1+H = {1,4,7,10}
2+ H = {2,5,811}.

Also, note that G/H = Z/(3).

1.3.3 Direct Products

Given groups G1, G, ..., Gy, we define their direct product by
GixGyx---xGp = {(91,92:---,9n) 1 i € Gi; 1 < i <n}.

Under the operation that is computed componentwise, G1, G, ..., G, forms a group with identity
(e1,€3,...,€e,) where e; is the identity in group Gj.

Example 1.5 Let G; = Z/(4) and Gy = Z/(3). Then the direct product G; x G3 is the group
Z/(4) x Z/(3). Note that this direct product is isomorphic to Z/(12). This is illustrated by the
isomorphism ¢ : Z/(12) — Z/(4) x Z/(3) which is defined by

¢(a) = (amod4,amod3).
The inverse of this isomorphism is

¢~ (¢,d) = —3c+4d (mod 12).

1.4 Fundamental Theorem of Finite Abelian Groups

The following theorem tells us that every finite abelian group is isomorphic to a direct product of
cyclic groups of prime power order.

Theorem 1 Suppose n > 1 and let
no= pi'py-py
be the unique prime factorization of n. Then
Z/(n) = Z[(p]") x Z](PF) x -+ x Z] (py*)-

Note, however, that we cannot decompose the direct product any further because in general, for
e>1,

Z)(p°) # Z/(p)x---xZ/(p),

~~
e

because Z/(p®) is cyclic with order p® while every element of the direct product has order p.
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2 Rings

A ring is a non-empty set R with two binary operations - and + where (R, +) is an abelian group,
(R, -) is a commutative monoid (a group without inverses). This is actually a commutative ring
with unit element, but the name ring will suffice for the purposes of this course. Examples of rings

include Z, Z/(n), Q, R, and C.

2.1 Polynomial Rings

Given a ring R, let R[X] be the set of all polynomials in X with coefficients from R. A typical
element in this set has the form

p(X) = aan“‘anlenil +-+aX+a

where ap,,ap_1,...,a9 € R. Define operations + and - on R[X] in the usual way for polynomials.
Then R[z] forms a ring called a polynomial ring.

Example 2.1 Consider the polynomial ring Q[X]. The polynomials p(X) = 1/2X2+5/7X —2/3
and ¢(X) = 2X — 3 are both elements of Q[X]. The addition of p(X) and ¢(X) is

PX)+a(X) = (GHOX2+(G+2)X+ (5 —3)

7
1 19 11
= _X2 _X — T .
SR 7 3
The product p(X)q(X) is
10 4 3 15
p(X)g(X) = (X*+ X2 = o X)+ (-5X? - —X +2)

e XP WX
B 14 21

2.2 Quotient Rings

An ideal I in ring R is a non-empty subset of R such that I is a subgroup of (R,+) and RI C I.

Example 2.2 Consider the ring Q[X]. Let I = {g(X)p(X) : g(X) € Q[X]} (where p(X) is the
same as in Example 2.1). Then I is an ideal of R. To see this, first consider the addition operation.
Let gl(X)7 gQ(X) € Q[X]7 then
g1 (X)p(X) + g2(X)p(X) = (91(X) + g2(X))p(X),
since g1(X) + g2(X) € Q[X]. Hence, I is closed under addition. Finally, let A(X) € Q[X]. Then,
hX)(g1(X)p(X)) = (h(X)g1(X))p(X),

since h(X)g1(X) € Q[X]. This proves that RI C I. Hence, I is an ideal in Q[X].
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Given an ideal I in a ring R, we can define the following equivalence relation. Let a,b € R,
then
a=b (modlI)

if and only if a — b € I. The set of equivalence classes induced is the quotient ring R/I. This is an
equivalence relation that is compatible with multiplication. For example, if a = b (mod I) and
c € R,then ca =cb (mod I), since a—b € I implies ¢(a—b) € I, which in turn implies ca—cb € I.
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