Scribe Notes for Algorithmic Number Theory Class 27—June 24, 1998 1

Scribe Notes for Algorithmic Number Theory
Class 27—June 24, 1998

Scribes: Scott A. Guyer, Duxing Cai, and Degong Song

Abstract

Today’s lecture continues with another algorithm for testing primality based on elliptic curves. We
also begin talking about the principles of integer factoring and present a few algorithms.

1 Primeness (continued)

Define #FE 4 g(Z/(p)) to be the order of the abelian group formed by the elliptic curve (A, B). The
following theorem suggests a method for testing primality.

THEOREM 1 Ifp is a prime and (A, B) is an elliptic curve, then
(p+1) —2yp < #EaB(Z/(p)) < (p+1) +2/p.
The algorithm suggested by this theorem is sketched below. Its only input is an integer n € Z™.

EC-Prime-Test

1. Select a random elliptic curve over Z/(n).

2. Compute 0 = #E4 B(Z/(p))-

3. Test whether o = 2¢ for some prime g (Use one of the previous tests for primality to get the
desired confidence that ¢ is prime). If not, return to step 1. If certain that ¢ is a prime, then
return the list of ¢’s.

4. Select a point on F4 g(Z/(n)) with order g.

5. Start the algorithm again with input ¢ (recursively).

The sequence of ¢’s represent a certificate of primeness for n.

2 Factoring Integers

We now move on to the more difficult task of determining the prime factorization of a composite
number. The algorithms we will investigate solve the following problem:

FACTOR INTEGER
INSTANCE: An odd integer n > 3.

SOLUTION: A non-trivial factor of n. In other words, an integer d
such that d | n and 1 < d < n.

2 Class 27—June 24, 1998 Scribe Notes for Algorithmic Number Theory

We assume that we already know the integer we wish to factor is indeed composite and that it
is not a perfect prime power because those cases are already solved (factoring primes is easy and
we can handle perfect prime powers using root techniques). Finally, we introduce the notion of
smoothness. An integer m is B-smooth if all prime factors of m are less than or equal to B.

Example 2.1 Both 60 and 1,000,000 are 5-smooth.
The time complexity for most of the algorithms we will discuss has the following form
Ln(a,¢) = O(exp((c + o(1))(Inn)*(Inlnn)1=)),

where o, c € Z*. But this is roughly equivalent to

C(lnn)o‘(lnlnn)l_a)

Notice that when a = 1, the algorithm is exponential in the size of the input. However, when
0 < a < 1, the complexity is sub-exponential.

2.1 Trial Division

The obvious approach to factoring an integer is to run through all the primes less than or equal
to y/n. Unfortunately this is very expensive when n is a product of large primes. We can make
a slight modification to this approach by running through all the primes up to some bound B
where B is O((Ign)°("). The time complexity of trial division in this case is satisfactory when n
is B-smooth.

2.2 Pollard’s Rho Algorithm

This algorithm is well suited for finding small prime factors of a composite integer n. This approach
is based on Floyd’s cycle finding algorithm and so we present it first.

Cycle Finding. Floyd developed an algorithm to find cycles in a random function f : S — S
where S is a finite set of cardinality n. The idea is to apply f successively on an initial element of
S until a cycle is found.

f f f f f
Ty "= T == s S X\ s = Ty = Ty
Floyd’s algorithm determines A and x).

CYCLE-FINDING(f, z¢)
1z« f(xo)

2 x9 — f(x1)

3 while xT; 75 Io;

4 do z;11 « f(z:)
S x2iq2 — f(f(x2))
6 1+—1+1

7 return (i,z;)

Scribe Notes for Algorithmic Number Theory Class 27—June 24, 1998 3

Pollard’s Rho algorithm for factoring integers follows this algorithm, except it defines its random
function f :Z/(n) — Z/(n) to be

f(z)=22+1 (mod n).

POLLARD-RHO(n)
1 a+2
2 b2
3 for i+ 1to o

4 do a+a?+1 (mod n)
5 b« b +1 (modn)
6 b« b>+1 (mod n)
7 d — ged(a—b,n)

8 ifl<d<n

9 then return d

10 ifd=n

11 then fail

This algorithm has expected running time O(n'/4). Equivalently, its expected running time is
O(p'/?) which illustrates the fact that this algorithm is well suited for integers that have small
prime factors.

2.3 Pollard’s p — 1 Algorithm

Pollard’s next algorithm attempts to find a prime factor p such that p — 1 is B-smooth. First, we
define Q) as follows:

Q = II ¢

¢ <B, ¢:<n <g*+1

_ H quogq n|)

q<B

If p — 1 is B-smooth, then (p — 1) | Q. By Fermat’s theorem, a® =1 (mod p) for any integer a
such that ged(a,n) = 1. Hence, p | ged(a® — 1, n).

The time complexity of this approach is dominated by the modular multiplications of a. Hence,
the time complexity is O(Blogg n).
2.4 Random Square Factoring

This approach to integer factoring is based on the following theorem and its corollary.

THEOREM 2 Letn = p{'p3?---p*. Let a # 0 be a quadratic residue modulo n. Then

#?=a (mod n)

has precisely 28 solutions modulo n.

4 Class 27—June 24, 1998 Scribe Notes for Algorithmic Number Theory

Proof: Recall that (Z/(n))* = (Z/(p$*))* x- - -x(Z/(pf*))*. So a maps to a k-tuple (a1, a, . . ., ax).
Each a; is a quadratic residue modulo p;* (precisely two square roots). Every k-tuple where the
ith entry is a square root of a; in Z/(p§*))* is a solution modulo n, hence, there are 2* solutions
modulo n. O

COROLLARY 3 Ifn has k > 2 distinct factors and x,y € (Z/(n))* are chosen at random such that

z?=9y> (mod n),

then x # +y (mod n) with probability

ok _ 9 1
ok 1 - ok—1
1
> —,
= 2

The next and final class will cover two algorithms based on random square factoring which have
been used for factoring large primes over the World Wide Web.

