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Abstract

In today’s class, we completed our discussion of recognizing prime numbers. The source of today’s
lecture is a reading from the Handbook of Applied Cryptography [3] . In addition, we began
discussing about elliptic curves.

1 Primality Testing

The Miller-Rabin Test

We have already looked at algorithms that use nondeterminism and randomness to give an answer
to an instance of the PRIMES problem. The Miller-Rabin algorithm relies on properties of the
multiplicative group (Z/(n))* and randomness to determine whether its input is composite or
prime.

If n is an odd integer, write n — 1 as 2°d where s > 1 and d is odd. We define the set of strong
liars as

S(n) = {ac (Z/(n))*:a?=1(mod n) or a*¢ = —1(mod n) for some r with 0 < r < s}.

If n is prime, the order of every a in (Z/(n))* is 2'd’ where t > 0 and d’ | d. Hence when n is prime,

(Z/(n))* = S(n).

Example 1.1. We are given n = 13, so we write n — 1 = 223. Then s = 2 and d = 3. We know
that the possible values for a are those in Z/(13). We can build a table for a2’ (mod 13) and
a?'4(mod 13).

The first test, a® = 1(mod 13), qualifies 1, 3, and 9 as strong liars. The second test, with r = 0,
is a® = —1(mod 13) = 12(mod 13) and qualifies 4, 10, and 12 as strong liars. The second test,
with r = 1, is a® = —1(mod 13) = 12(mod 13); it qualifies the remaining elements. This is as we
expect, since n is prime.

Lemma 1.2. (Lemma 9.4.4 in the text)

Let n be an odd integer greater than or equal to 8. Then n is prime if and only if S(n) =
(Z/(n))*. If n is composite, then |S(n)| < (n —1)/4. An element of (Z/(n))* — S(n) is a strong
witness to the fact that n is composite.
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a a*(mod 13) a5(mod 13)
1 1 1
2 8 12
3 1 1
4 12 1
5 8 12
6 8 12
7 5 12
8 ) 12
9 1 1
10 12 1
11 ) 12
12 12 1

Table 1: Table of elements for Miller-Rabin test.

Miller-Rabin(n)

Write n — 1 = 25d where d is odd.
Choose a € {1,2,...,n — 1} uniformly at random.
ag — a® mod n.
If ap = 1, then return “prime”.
If ap = —1, then return “prime”.
For i — 1 to s do:
a; «— a?fl mod n.
If a; = —1 then return “prime”.
Return “composite”.

Miller-Rabin provides a Monte Carlo algorithm that correctly identifies composites with probability
at least 3/4. The time complexity is O((Ign)?) bit operations. When Miller-Rabin returns that n
is a prime, we repeat the algorithm to gain confidence in the result.

Example 1.3. Given n = 21, we can write n — 1 = 225. Then s = 2 and d = 5. Choose a € [1, 20]

at random; in class, we chose a = 6. Compute ag = a® mod 21 = 6. Since ag # 1(mod 21)
and ay # —1(mod 21), then compute a; = a? mod 21 = 62 mod 21 = —6(mod 21). Return
“composite”.

Certificates of Primality

We have discussed algorithms that recognize primes and composites. We may also want to construct
an output that certifies that an input n is prime. One such output relies on the following property
of prime numbers.

Theorem 1.4. (see Kilian [2]) Suppose that for some a € (Z/(n))* and some integer ¢ > \/n, we
have ged(a — 1,n) =1 and a? = 1(mod n). If q is prime, then n is prime.
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Proof. By contradiction. Suppose that ¢ is prime and n is not prime. Then there is a prime p < /n
that divides n. Consequently, a? = 1(mod p). Let r be the order of a in (Z/(n))*. We know that
r must divide q. Also, we know that »r < p—1. So r < p < ¢q. Since q is prime, r must be 1. Hence
a = 1(mod p). Sop | (a—1) and p | n. But, ged(a — 1,n) = 1. This is a contradiction, so such a p
cannot exist. Therefore, n is prime. O

The certificate we want is a sequence (¢;, a;), (¢i—1,a;-1),-- -, (q1,01), g0 where gy = n. This
certifies that n is prime if:

1. ¢; is a “small” prime (relative to what can be proven deterministically in polynomial time),
and

2. (gj,a;) must constitute a proof that g;_; is prime, 1 < j <, by Theorem 1.4.

Example 1.5. Let n = gy = 179. Then guess q; = 89 and a; = 9. Check that 89 > /179, then
use Theorem 1.4 to verify that ¢; is prime: 9% = 1(mod 179) and ged(9 — 1,179) = 1. Next,
guess go = 11 and ay = 45. Check that 11 > /89, and use Theorem 1.4 to verify that go is prime:
45" = 1(mod 89) and ged(45 — 1,89) = 1. Since 11 is a small prime, we stop and produce the
certificate: (11,45),(89,9),179.

Guessing ¢ and a is one method of obtaining these values. If ¢ is guessed, then we can use the
previously discussed algorithms to gain some confidence that g is prime before proceeding.

2 Elliptic Curves

Definition 2.1. Let F be a field of characteristic not 2 or 3. An elliptic curve is a pair (A, B) €
FxF such that 443+27B2 # 0. It defines a set of points E4 g(F) = {(z,y) : y* = 2+ Az+B}U{I}.

In this definition, we can think of I as being equivalent to infinity.

Example 2.2. Consider the field R. The graph in Figure 1 represents the elliptic curve generated
by A= —5 and B =1 in this field.

Note that the graph is symmetric about the z-axis.

In order to make E4 p into a group, we need to define an addition operation. Define s + ¢ to
be the reflection about the z-axis of the third point of the graph cut by the straight line passing
through s and ¢.

It can be seen that every line passing through two points will intersect with the graph at one
other point, except for the points tangential to the ovoid portion of the graph. An example of
such a point is u. In that case u + u = —v. Alternatively, we could write v = (—u) + (—v), which
indicates that points tangential to the curve still conform to the definition of addition.

Example 2.3. Consider the field F = Z/(5) with A =2 and B = 4.

4A3 +27B? = (—1)(8) + (2)(16) = 3+2=4#0

Therefore (A, B) represents an elliptic curve.

In Table 2, the entries with corresponding values in the second columns represent elements of
the set E4 p. Thus,

EA,B = {(Oa 2)7 (Oa 3)) (2a 1)a (2a4)a (47 1)7 (4a4)al}
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Figure 1: Visualization of elliptic curve in R x R
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Table 2: Table of possible z and y values used to generate E4 p
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We can test pairs of elements to verify that addition works. Consider (4, 1)+ (0+3). The slope
— = 2 so the direction of the line is (1,2). Thus, the equation of the line is (4,1) + A(1, 2).
Choosing A = 4, we will get the point (4,1)+ (4, 3) = (3, 4). The reflection of this point is (2, 1),
which is contained in the group. Similarly, we can verify that addition is closed for all possible
operand combinations.
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