Scribe Notes for Algorithmic Number Theory Class 25—June 22, 1998

Scribes: Cara Struble and Craig Struble

Abstract

We start Chapter 9 on testing primality.

1 Testing Primality

Problem: Primes

Instance: An integer $n \in \mathbb{Z}^+$. Question: Is n a prime number?

From Section 5.6, if 2 / n then the multiplicative group $(\mathbb{Z}/(n))^*$ is cyclic and of order $\phi(n)$.

Theorem 1.1 (Euler-Fermat Theorem). If gcd(a, n) = 1 then $a^{\phi(n)} \equiv 1 \pmod{n}$.

Theorem 1.2 (Fermat's Theorem). If p is prime and $p \not\mid a$, then $a^{p-1} \equiv 1 \pmod{n}$.

Theorem 1.3 (Theorem 9.1.1). The positive integer n is prime if and only if there exists an integer a such that $a^{n-1} \equiv 1 \pmod{n}$ and $a^{(n-1)/q} \not\equiv 1 \pmod{n}$ for all primes q that are factors of n-1.

These theorems are the background facts we can use in primality testing.

2 Application

An application of testing primality is Rivest-Shamir-Adleman (RSA) public key encryption. The set up:

- 1. Choose two large distinct primes p and q.
- 2. Choose an integer d less than pq such that $gcd(d, \phi(pq)) = 1$.
- 3. Compute e such that $ed \equiv 1 \pmod{\phi(pq)}$ with the Extended Euclidean Algorithm.
- 4. Make public pq and e. Keep p, q, and d private.

Encryption: $E(m) = m^e \pmod{pq}$. Decryption: $D(x) = x^d \pmod{pq}$.

Check that this works:

$$D(E(m)) = (m^e)^d \pmod{pq}$$
$$= m^{ed} \pmod{pq}$$
$$= m \pmod{pq},$$

because $ed \equiv 1 \pmod{\phi(pq)}$ and $(\mathbb{Z}/(pq))^*$ is cyclic of order $\phi(pq)$.

Example 2.1. Let p = 47 and q = 59. Then pq = 2773. Choose d = 157, so e = 17 and $de = 1 \pmod{2668}$.

Encryption gives

$$E(94) = 94^{17} \mod 2773$$

= 1883,

while decryption returns

$$D(1883) = 1883^{157} \mod 2773$$
$$= 94.$$

Theorem 2.2 (Theorem 9.1.4 (Pratt)). PRIMES $\in NP$.

Proof sketch. The strategy is to guess a tree of integers. The tree has these properties:

- 1. n is at the root.
- 2. Every leaf is labeled 2.
- 3. If t is an internal node, then the product of the children of t is t-1.

Now proceed bottom-up to prove each integer in the tree is prime. Let s be one such integer. Use Theorem 9.1.1 to guess a_s such that $a_s^{s-1} \equiv 1 \pmod{s}$ and $a_s^{(s-1)/q} \not\equiv 1 \pmod{s}$ for every child q of s. If we find such an a_s , then s is proven to be prime. The tree has polynomial size. The algorithm works in polynomial time. Hence $PRIMES \in NP$.

The tree together with the a_s 's is a **certificate** of the primality of n.

Example 2.3. This is a tree for n = 59. (n is prime.)

Example 2.4. This is a tree for n = 40. (n is composite.)

The following is a deterministic polynomial time primality test.

```
Fellows-Koblitz(n, q_1, e_1, \ldots, q_k, e_k)
   \begin{array}{ll} 1 & \rhd \text{ Here } \ n-1 = q_1^{e_1} \cdots q_k^{e_k} \ \text{ is the prime factorization of } \ n-1 \\ 2 & \textbf{for } a \leftarrow 2 \ \textbf{to} \ \left\lfloor (\log n)^2 \right\rfloor \end{array}
        do if a^{n-1} \not\equiv 1 \pmod{n}
   3
   4
                   then return "composite"
   5
               Compute \operatorname{ord}_n a
                                                                                 ⊳ Exercise 5.8
               for each prime q \mid \operatorname{ord}_n a
   6
               do if gcd(a^{(ord_n a)/q} - 1, n) > 1
                        then return "composite"
        h \leftarrow \operatorname{lcm}\{\operatorname{ord}_n a\} \text{ where } 2 \le a \le (\log n)^2
        if h \leq \sqrt{n}
 10
 11
            then return "composite"
 12
             else return "prime"
```

3 Probabilistic Primality Tests

Recall the Legendre symbol:

$$\left(\frac{a}{p}\right) = \begin{cases} 0 & p \mid a \\ +1 & \text{quadratic residue} \\ -1 & \text{quadratic nonresidue} \end{cases}$$

From Theorem 5.8.1, we have that if p is an odd prime, then

$$\left(\frac{a}{p}\right) = a^{(p-1)/2} \pmod{p}.$$

Now we introduce the Jacobi symbol, $\left(\frac{a}{n}\right)$, where n may be composite. If n is prime, the Jacobi symbol behaves just as the Legendre symbol. From Section 5.9, we can compute $\left(\frac{a}{n}\right)$ in polynomial time.

The set of Euler liars for n is

$$E(n) = \left\{ a \in (\mathbb{Z}/(n))^* : \left(\frac{a}{n}\right) = a^{(n-1)/2} \bmod n \right\}.$$

Lemma 3.1 (Lemma 9.4.1). Let $n \ge 3$ be an odd integer. Then n is prime if an only if $E(n) = (\mathbb{Z}/(n))^*$.

SOLOVAY-STRASSEN(n)1 Choose $a \in \{1, \ldots, n-1\}$ uniformly at random.
2 if $\gcd(a, n) \neq 1$ 3 then return "composite"
4 else if $\left(\frac{a}{n}\right) \neq a^{(n-1)/2} \mod n$ 5 then return "composite"
6 else return "prime"

Theorem 3.2 (Theorem 9.4.2). If n is prime, then Solovay-Strassen returns "prime". If n is composite, then Solovay-Strassen returns "composite" for at least half of the $a \in \{1, ..., n-1\}$. The time complexity is $O((\lg n)^3)$ bit operations.

Solovay-Strassen is a Monte Carlo algorithm for Composites.