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1 Abstract

In this section, we continue to discuss the L3 algorithm. First we will complete the proof that
it terminates and we will state the time complexity. Then we will show three applications of
the algorithm, namely polynomial factorization, the subset-sum problem, and Merkle-Hellman
knapsack encryption.

2 Termination of the L3 Algorithm
Define

di = |det((bj, bx))1<j k<l
= |det((b}, b)) 1<j kx| - (1)

The equality (1) holds, because, from the previous class, we know
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The j, k-entry in B; B} is precisely (b;, bx). Also,
B;B] = (M;Bf)(M;B})"
= M;(B;B})TM;.
Therefore,

det((bj, b)) = det(B;B])
= det(M;) det(B; B;T) det(M;)T
= 1-det((b],b})) -1
= det((b}, b})).

We can rewrite d; as

d; = [Tl
j=1
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for 0 <i <n. BEach d; >0, dy = 1, and d,, = (d(L))*.
Define

When we swap bx_1 and by, di_1 is reduced by a factor less than %. We need a lower bound on d;.
Define

m(L) = min{|lz[?® : z€L—{0}}.

S

We know that m(L) < n(d(L))». This bound is true for each i, i.e.,
m(L) < id>".

Hence,

and therefore L3 terminates.

3 Time Complexity of the L? Algorithm
Let

B = max ||b>.
1<i<n

Then L? requires O(n*1g B) arithmetic operations on integers of size O(n lg B). The bit complexity
of L3 is O(n%(lg B)3).

4 Applications of the L? Algorithm

4.1 Factorization of Polynomials with Integer Coefficients

Theorem 4.1. Let f € Z[X] be such that the greatest common divisor' of its coefficients is 1.
Then L3 can be used to factor f in O(n'? +n°(Ig f)3) bit operations, where n = dg f, and lg f is
the number of bits necessary to represent the polynomial f.

4.2 The Subset-Sum Problem

Definition 4.2. The Subset-Sum Problem is defined as follows:

!The greatest common divisor here is the greatest integer that divides each of the coefficients. This statement
does not imply that the coefficients are pairwise relatively prime.
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Instance: A set S ={aq, as, ..., a,} of positive integers and a positive integer s.
Solution: A subset of S that sums to s. This can also be thought of as a sequence
x1, T, ..., xp € {0,1} such that

n
s = E xr;a;.
i=1

Theorem 4.3. The decision version of Subset-Sum is NP-complete.
Theorem 4.4. Using dynamic programming, Subset-Sum can be solved in O(ns) time.

The hard case for this algorithm is when s > n.

Define the density of S as
density(S) = S C—
max 1g a;
1<i<n

Now we can state the L? Subset-Sum algorithm:
L3-Subset-Sum (a1, az, ..., an,s)
i
Let b1, ba, ..., byy1 be the rows of the following matrix:

1 0 --- 0 0 ma
01 --- 0 0 masg

May,

= O
= O oo
[T

= O

el ms
(bl, bg, ey bn+1) — L3(b1, bg, ey bn+1)
fori+— 1ton+1do
Let b; = (Y1, Yo, ..., Yoy1)
if Y,11 =0and ¥; € {—3,3}, 1 <i <n, then
sum «— 0
for j +— 1ton do
Xj—Yi+3
sum «— sum + Xja;
if sum = s, then return (X, X, ..., X,)
sum «— 0
for j «— 1ton do
Xj——Yj+3
sum < sum + Xja;
if sum = s, then return (X1, X, ..., X,,)
return Failure {no solution or bad luck}

If (X4, Xo, ..., X,) is a solution, then

Y = <iXibi>_bn+1
i=1
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has the form (£3, ..., =1, 0) and has length [|Y|| = 1,/n.

Coster, et.al. show this algorithm will succeed with high probability when

density(S) < 0.9408.

4.3 Merkle-Hellman Knapsack Encryption

We wish to encrypt a message m = mimg---m, € {0,1}". A super-increasing sequence is a
sequence X1, Xo, ..., X, of positive integers such that

i—1
Xi > ZXj’
j=1
for 1 <j<n.

Example 4.5. Let m = 101101. Then we can encode m with the super-increasing sequence 3, 5,

14, 33, 70, 197.

To encode a message m, we compute the sum

In the example above, the encoding of m would be

s = (1)3+(0)5+ (1)14+ (1)33+ (0)70 + (1)197
= 3+14+33+197
= 247

Because we have a super-increasing sequence, decoding is easy. We start with X,, and compare
it to s. If X, > s, then m,, = 1. Otherwise, m,, = 0. Then we can simply subtract m,X,, from s,
decrement n, and repeat until we have all the m,,s.

Example 4.6. Here’s a decoding of the example above:

me = 1 247 > 197 = X,
247 — 197 =50

ms =0 50 < 70 = X5

my =1 50 >33 = Xy
50 —33 =17

ms =1 17> 14 = my
17—14=3

mo =0 3 <5 =Xy

m1:1 3:3:X1

n
Choose p to be a prime greater than ZXi. Note that, because we have a super-increasing
i=1
sum, s = s mod p. Choose a random integer ¢ between 1 and p — 1, and compute the inverse d
modulo p, that is,

cd=1 (mod p).
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Now, define
Y, =cX; (mod p).

In general, the sequence Y7, ..., Y, is not super-increasing. To encrypt a message m, all we must
do is create the message t, where

t= ZYsz (mod p).
i=1

To decrypt t, all we have to do is compute s = dt mod p, and then we can just decode s as
before.

We can use this scheme for public-key encryption by making the following values public and
secret:

public: Y1, ..., Y, p
secret: ¢, d, X1, ..., Xn

Example 4.7. Continuing with the example above, let p = 509 and let ¢ = 428. We can compute
d = 465. Now, we get the following values for Y;:

Vi = 266
Yy = 104
Y; = 393
v, = 381
Ys = 438
Yy = 331.

With these values, the encryption of m is

t = (1)266+ (0)104+ (1)393 + (1)381 + (0)438 + (1)331 mod p
= 353.

To decrypt this message, we just compute

dt mod p = (465)(353) mod p
= 247.

Definition 4.8. We can now define the Subset-Sum problem for Merkle-Hellman:

Instance: Encrypted message t, public keys consisting of a prime p and a sequence
of integers Y7, ..., Yy, satisfying 1 <Y; <p— 1.

n
Solution: A sequence of bits mq, ..., m, such that t = ZmZY;
i=1
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4.4 Simultaneous Diophantine Approximation

Definition 4.9. We define the Simultaneous Diophantine Approximation problem as

Instance: oy, ..., a, € R, abound Q € Z" and a real error bound e.
Solution: q, p1,...,pq € Z, 1 <q < @ such that
o _Pr|
q q

for all r satisfying 1 <r <d.

Theorem 4.10. (Dirichlet) Simultaneous Diophantine Approzimation has a solution when € >

Qfl/d.

Theorem 4.11. L3 can solve simultaneous Diophantine Approzimation in polynomial time when
e > 2HN/AQ=1/d o equivalently, et > 24d+D/AQ 1,

Proof. Let

1 0 0 0 0

0 1 0 0 0

B = : ,
0 0 1 0 0
0 0 0 1 0
—ap —og o —og1 —og €/Q

and let by, ..., bgy1 be the reduced basis from L3. We know

103112 < 20741871,

for1 <i<d+1.
Taking the product

d+1
||b1||2(d+1) < 2(0—+—1—+—---+d)H||b>{||2
i=1
d(d+1)
= 2 (d(L))?,
we obtain
bl < 2% (d(L)) D,
Now .
d+1 < € od(d+1)/4
€ > =2 ,
Q
SO
€ €d+1
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and
[ba]] <e.
Now, we note that by = (p1, p2, - .., pd, ¢) is an integer combination of the rows of B. Hence,
we can write
€
Qp — & S )
q q
and therefore,
|pr - arQ| <e

5 Next Time

In the next class, we will begin to discuss primality testing and RSA Encryption.



