Scribe Notes for Algorithmic Number Theory Class 24—June 19, 1998

Scribes: Wen Wang, Yizhong Wang, and Jeremy Rotter

1 Abstract

In this section, we continue to discuss the L^3 algorithm. First we will complete the proof that it terminates and we will state the time complexity. Then we will show three applications of the algorithm, namely polynomial factorization, the subset-sum problem, and Merkle-Hellman knapsack encryption.

2 Termination of the L^3 Algorithm

Define

$$d_{i} = |\det(\langle b_{j}, b_{k} \rangle)_{1 \leq j, k \leq i}|$$

$$= |\det(\langle b_{j}^{*}, b_{k}^{*} \rangle)_{1 \leq j, k \leq i}|.$$
(1)

The equality (1) holds, because, from the previous class, we know

$$B = \begin{pmatrix} -b_{1} - \\ -b_{2} - \\ \vdots \\ -b_{n} - \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \mu_{21} & 1 & 0 & \cdots & 0 \\ \mu_{31} & \mu_{32} & 1 & & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \mu_{i1} & \mu_{i2} & \mu_{i3} & & 1 \end{pmatrix} \begin{pmatrix} -b_{1}^{*} - \\ -b_{2}^{*} - \\ \vdots \\ -b_{n}^{*} - \end{pmatrix}$$

$$B_{i} = M_{i} \qquad B_{i}^{*}$$

$$i \times n \qquad i \times i \qquad i \times n$$

The j, k-entry in $B_i B_i^T$ is precisely $\langle b_j, b_k \rangle$. Also,

$$B_i B_i^T = (M_i B_i^*) (M_i B_i^*)^T$$

= $M_i (B_i^* B_i^*)^T M_i^*$.

Therefore,

$$\begin{aligned}
\det(\langle b_j, b_k \rangle) &= \det(B_i B_i^T) \\
&= \det(M_i) \det(B_i^* B_i^{*T}) \det(M_i)^T \\
&= 1 \cdot \det(\langle b_j^*, b_k^* \rangle) \cdot 1 \\
&= \det(\langle b_j^*, b_k^* \rangle).
\end{aligned}$$

We can rewrite d_i as

$$d_i = \prod_{j=1}^i \|b_j^*\|^2,$$

for $0 \le i \le n$. Each $d_i > 0$, $d_0 = 1$, and $d_n = (d(L))^2$. Define

$$D = \prod_{i=1}^{n-1} d_i.$$

When we swap b_{k-1} and b_k , d_{k-1} is reduced by a factor less than $\frac{3}{4}$. We need a lower bound on d_i . Define

$$m(L) = \min \left\{ \|x\|^2 : x \in L - \{0\} \right\}.$$

We know that $m(L) \leq n(d(L))^{\frac{2}{n}}$. This bound is true for each i, i.e.,

$$m(L) \le i d_i^{2/i}$$
.

Hence,

$$\left(\frac{m(L)}{i}\right)^{\frac{i}{2}} \le d_i,$$

and therefore L^3 terminates.

3 Time Complexity of the L^3 Algorithm

Let

$$B = \max_{1 \le i \le n} \|b_i\|^2.$$

Then L^3 requires $O(n^4 \lg B)$ arithmetic operations on integers of size $O(n \lg B)$. The bit complexity of L^3 is $O(n^6 (\lg B)^3)$.

4 Applications of the L^3 Algorithm

4.1 Factorization of Polynomials with Integer Coefficients

Theorem 4.1. Let $f \in \mathbb{Z}[X]$ be such that the greatest common divisor¹ of its coefficients is 1. Then L^3 can be used to factor f in $O(n^{12} + n^9(\lg f)^3)$ bit operations, where $n = \lg f$, and $\lg f$ is the number of bits necessary to represent the polynomial f.

4.2 The Subset-Sum Problem

Definition 4.2. The Subset-Sum Problem is defined as follows:

¹The greatest common divisor here is the greatest integer that divides each of the coefficients. This statement <u>does not</u> imply that the coefficients are pairwise relatively prime.

Instance: A set $S = \{a_1, a_2, \ldots, a_n\}$ of positive integers and a positive integer s. Solution: A subset of S that sums to s. This can also be thought of as a sequence $x_1, x_2, \ldots, x_n \in \{0, 1\}$ such that

$$s = \sum_{i=1}^{n} x_i a_i.$$

Theorem 4.3. The decision version of Subset-Sum is NP-complete.

Theorem 4.4. Using dynamic programming, Subset-Sum can be solved in O(ns) time.

The hard case for this algorithm is when $s \gg n$.

Define the density of S as

$$density(S) = \frac{n}{\max_{1 \le i \le n} \lg a_i}.$$

Now we can state the L^3 Subset-Sum algorithm:

$$L^3\text{-Subset-Sum }(a_1,\,a_2,\,\ldots,\,a_n,s)$$

$$m \leftarrow \left\lceil \frac{1}{2}\sqrt{n} \right\rceil$$
Let $b_1,\,b_2,\,\ldots,\,b_{n+1}$ be the rows of the following matrix:
$$\begin{pmatrix} 1 & 0 & \cdots & 0 & 0 & ma_1 \\ 0 & 1 & \cdots & 0 & 0 & ma_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 & ma_n \\ \frac{1}{2} & \frac{1}{2} & \cdots & \frac{1}{2} & \frac{1}{2} & ms \end{pmatrix}$$

$$(b_1,\,b_2,\,\ldots,\,b_{n+1}) \leftarrow L^3(b_1,\,b_2,\,\ldots,\,b_{n+1})$$
for $i \leftarrow 1$ to $n+1$ do
$$\text{Let } b_i = (Y_1,\,Y_2,\,\ldots,\,Y_{n+1})$$
if $Y_{n+1} = 0$ and $Y_i \in \{-\frac{1}{2},\frac{1}{2}\},\,1 \leq i \leq n,\,$ then
$$sum \leftarrow 0$$
for $j \leftarrow 1$ to n do
$$X_j \leftarrow Y_j + \frac{1}{2}$$

$$sum \leftarrow sum + X_j a_j$$
if $sum = s,\,$ then return $(X_1,\,X_2,\,\ldots,\,X_n)$

$$sum \leftarrow 0$$
for $j \leftarrow 1$ to n do
$$X_j \leftarrow -Y_j + \frac{1}{2}$$

$$sum \leftarrow sum + X_j a_j$$
if $sum = s,\,$ then return $(X_1,\,X_2,\,\ldots,\,X_n)$
return Failure $\{no\,$ solution or bad luck $\}$

If (X_1, X_2, \ldots, X_n) is a solution, then

$$Y = \left(\sum_{i=1}^{n} X_i b_i\right) - b_{n+1}$$

has the form $(\pm \frac{1}{2}, \ldots, \pm \frac{1}{2}, 0)$ and has length $||Y|| = \frac{1}{2}\sqrt{n}$.

Coster, et.al. show this algorithm will succeed with high probability when

4.3 Merkle-Hellman Knapsack Encryption

We wish to encrypt a message $m = m_1 m_2 \cdots m_n \in \{0, 1\}^n$. A super-increasing sequence is a sequence X_1, X_2, \ldots, X_n of positive integers such that

$$X_i > \sum_{j=1}^{i-1} X_j,$$

for $1 \leq j \leq n$.

Example 4.5. Let m = 101101. Then we can encode m with the super-increasing sequence 3, 5, 14, 33, 70, 197.

To encode a message m, we compute the sum

$$s = \sum X_i m_i.$$

In the example above, the encoding of m would be

$$s = (1)3 + (0)5 + (1)14 + (1)33 + (0)70 + (1)197$$
$$= 3 + 14 + 33 + 197$$
$$= 247.$$

Because we have a super-increasing sequence, decoding is easy. We start with X_n and compare it to s. If $X_n \geq s$, then $m_n = 1$. Otherwise, $m_n = 0$. Then we can simply subtract $m_n X_n$ from s, decrement n, and repeat until we have all the $m_n s$.

Example 4.6. Here's a decoding of the example above:

Choose p to be a prime greater than $\sum_{i=1}^{n} X_i$. Note that, because we have a super-increasing sum, $s = s \mod p$. Choose a random integer c between 1 and p - 1, and compute the inverse d modulo p, that is,

$$cd \equiv 1 \pmod{p}$$
.

Now, define

$$Y_i = cX_i \pmod{p}$$
.

In general, the sequence Y_1, \ldots, Y_n is not super-increasing. To encrypt a message m, all we must do is create the message t, where

$$t = \sum_{i=1}^{n} Y_i m_i \pmod{p}.$$

To decrypt t, all we have to do is compute $s = dt \mod p$, and then we can just decode s as before.

We can use this scheme for public-key encryption by making the following values public and secret:

public:
$$Y_1, \ldots, Y_n, p$$

secret: c, d, X_1, \ldots, X_n

Example 4.7. Continuing with the example above, let p = 509 and let c = 428. We can compute d = 465. Now, we get the following values for Y_i :

$$Y_1 = 266$$
 $Y_2 = 104$
 $Y_3 = 393$
 $Y_4 = 381$
 $Y_5 = 438$
 $Y_6 = 331$.

With these values, the encryption of m is

$$t = (1)266 + (0)104 + (1)393 + (1)381 + (0)438 + (1)331 \mod p$$

= 353.

To decrypt this message, we just compute

$$dt \mod p = (465)(353) \mod p$$

= 247.

Definition 4.8. We can now define the Subset-Sum problem for Merkle-Hellman:

Instance: Encrypted message t, public keys consisting of a prime p and a sequence

of integers Y_1, \ldots, Y_n , satisfying $1 \le Y_i \le p-1$.

Solution: A sequence of bits m_1, \ldots, m_n such that $t = \sum_{i=1}^n m_i Y_i$.

4.4 Simultaneous Diophantine Approximation

Definition 4.9. We define the Simultaneous Diophantine Approximation problem as

Instance: $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$, a bound $Q \in \mathbb{Z}^+$ and a real error bound ϵ .

Solution: $q, p_1, \ldots, p_d \in \mathbb{Z}, 1 \leq q \leq Q$ such that

$$\left|\alpha_r - \frac{p_r}{q}\right| \le \frac{\epsilon}{q}$$

for all r satisfying $1 \le r \le d$.

Theorem 4.10. (Dirichlet) Simultaneous Diophantine Approximation has a solution when $\epsilon \geq Q^{-1/d}$.

Theorem 4.11. L^3 can solve simultaneous Diophantine Approximation in polynomial time when $\epsilon > 2^{(d+1)/4}Q^{-1/d}$ or, equivalently, $\epsilon^d \geq 2^{d(d+1)/4}Q^{-1}$.

Proof. Let

and let b_1, \ldots, b_{d+1} be the reduced basis from L^3 . We know

$$||b_1^*||^2 \leq 2^{i-1}||b_i^*||^2,$$

for $1 \le i \le d + 1$.

Taking the product

$$||b_1||^{2(d+1)} \le 2^{(0+1+\cdots+d)} \prod_{i=1}^{d+1} ||b_1^*||^2$$

= $2^{\frac{d(d+1)}{2}} (d(L))^2$,

we obtain

$$||b_1|| \le 2^{\frac{d}{4}} (d(L))^{1/(d+1)}.$$

Now

$$\epsilon^{d+1} \ge \frac{\epsilon}{Q} 2^{d(d+1)/4},$$

so

$$d(L) = \frac{\epsilon}{Q} \le \frac{\epsilon^{d+1}}{2^{d(d+1)/4}}$$

and

$$||b_1|| \leq \epsilon.$$

Now, we note that $b_1 = (p_1, p_2, \dots, p_d, q)$ is an integer combination of the rows of B. Hence, we can write

$$\left|\alpha_r - \frac{p_r}{q}\right| \le \frac{\epsilon}{q},$$

and therefore,

$$|p_r - \alpha_r q| \le \epsilon.$$

5 Next Time

In the next class, we will begin to discuss primality testing and RSA Encryption.