Scribe Notes for Algorithmic Number Theory Class 23—June 18, 1998

Scribes: Scott A. Guyer, Duxing Cai, and Degong Song

Abstract

The concept of a reduced basis is introduced and some properties are discussed. Also, the Lenstra, Lenstra, Lovasz (L^3) Algorithm is given, which starts with any given basis $\{b_1, b_2, \ldots, b_n\}$ and finds a reduced basis.

1 Reduced Basis and Properties

Vectors b_1, b_2, \ldots, b_n are quasi-orthogonal if $|\mu_{ij}| \leq \frac{1}{2}$, $1 \leq j < i \leq n$. Vectors are quasi-ordered if $||b_i^* + \mu_{i,i-1}b_{i-1}^*||^2 \geq \frac{3}{4}||b_{i-1}^*||^2$. A basis is reduced if it is quasi-orthogonal and quasi-ordered.

Theorem 1 The following properties hold for a reduced basis $b_1, ..., b_n$ of a lattice L:

1.
$$||b_i^*||^2 \ge \frac{1}{2} ||b_{i-1}^*||^2$$
, for $2 \le i \le n$.

2.
$$||b_i^*||^2 \ge 2^{j-i} ||b_i^*||^2$$
, for $1 \le j \le i \le n$.

3.
$$||b_i||^2 \le 2^{i-1} ||b_i^*||^2$$
.

4.
$$||b_j||^2 \le 2^{i-1} ||b_i^*||^2$$
, for $1 \le j \le i \le n$.

5. If
$$x \in L - \{0\}$$
, then $||b_i||^2 \le 2^{n-1} ||x||^2$.

Proof:

1. Consider

$$||b_i^* + \mu_{i,i-1}b_{i-1}^*||^2 = ||b_i^*||^2 + |\mu_{i,i-1}|^2 ||b_{i-1}^*||^2 \ge \frac{3}{4} ||b_{i-1}^*||^2.$$

Since $|\mu_{i,j}| \leq \frac{1}{2}$ implies $|\mu_{i,i-1}|^2 \leq \frac{1}{4}$, we get

$$\|b_i^*\|^2 + \frac{1}{4}\|b_{i-1}^*\|^2 \geq \frac{3}{4}\|b_{i-1}^*\|^2.$$

Hence $||b_i^*||^2 \ge \frac{1}{2} ||b_{i-1}^*||^2$.

2. This follows from property 1 of this theorem.

3. Recall that

$$b_i = b_i^* + \sum_{j=1}^{i-1} \mu_{ij} b_j^*.$$

Squaring yields the following:

$$||b_{i}||^{2} = ||b_{i}^{*}||^{2} + \sum_{j=1}^{i-1} \mu_{ij}^{2} ||b_{j}^{*}||^{2}$$

$$\leq ||b_{i}^{*}||^{2} + \frac{1}{4} \sum_{j=1}^{i-1} 2^{i-j} ||b_{i}^{*}||^{2} = ||b_{i}^{*}||^{2} \left(1 + \frac{1}{4} \sum_{j=1}^{i-1} 2^{i-j}\right)$$

$$\leq ||b_{i}^{*}||^{2} \left(1 + \frac{2^{i}}{4}\right) \leq 2^{i-1} ||b_{i}^{*}||^{2}.$$

- 4. By properties 2 and 3, we know that $||b_j||^2 \le 2^{j-1} ||b_j^*||^2$ and $||b_j^*||^2 \le 2^{i-j} ||b_i^*||^2$. Combining these and letting j = 1, we get $||b_1||^2 \le 2^{i-1} ||b_i^*||^2$.
- 5. Write $x = \sum_{i=1}^{n} r_i b_i$, where $r_i \in \mathbb{Z}$. Let k be the maximum integer such that $r_k \neq 0$ and hence $x = \sum_{i=1}^{k} r_i b_i$. It is easy to see that there exists an $r_i^* \in Q$ such that $x = \sum_{i=1}^{k} r_i^* b_i^*$. From

$$x = \sum_{i=1}^{k} r_i b_i$$

$$= \sum_{i=1}^{k} r_i \left(b_i^* + \sum_{j=1}^{i-1} \mu_{ij} b_j^* \right)$$

and

$$r_i^* = \frac{\langle x, b_i^* \rangle}{\langle b_i^*, b_i^* \rangle},$$

we see that

$$r_i^* = r_i + \sum_{j=i+1}^k \mu_{ji},$$

for $0 \le i \le k-1$, and that

$$\begin{array}{rcl} r_k^* & = & \frac{\langle x, b_k^* \rangle}{\langle b_k^*, b_k^* \rangle} \\ & = & r_k. \end{array}$$

Since $r_k \in \mathbb{Z}$ and $r_k \neq 0$, we have $|r_k| \geq 1$ and hence

$$||x||^2 = \sum_{i=1}^k |r_i^*|^2 ||b_i^*||^2 \ge |r_k^*|^2 ||b_k^*||^2 = |r_k|^2 ||b_k^*||^2 \ge ||b_k^*||^2.$$

By property 4, we get

$$||b_1||^2 \le 2^{k-1} ||b_k^*||^2 \le 2^{k-1} ||x||^2 \le 2^{n-1} ||x||^2.$$

As a consequence of property 5, every reduced basis has the following property:

$$||b_1||^2 \le 2^{n-1} \sqrt{m(L)}.$$

Lenstra, Lenstra, Lovasz (L^3) Algorithm 2

The goal of this algorithm is to start with a basis $\{b_1, b_2, \ldots, b_n\}$ and find a reduced basis.

The first step is to compute the Gram-Schmidt orthogonalization $\{b_1^*, b_2^*, \dots, b_n^*\}$ and the μ_{ij} 's. We obtain the matrix equation

$$\begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ \mu_{21} & 1 & 0 & \cdots & \vdots \\ \mu_{31} & \mu_{32} & 1 & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & 0 \\ \mu_{n1} & \cdots & \cdots & 1 \end{bmatrix} \begin{bmatrix} b_1^* \\ b_2^* \\ b_3^* \\ \vdots \\ b_n^* \end{bmatrix},$$

or simply

$$B = MB^*$$

Let [x] be the unique integer in $(x-\frac{1}{2},x+\frac{1}{2}]$. For any fixed i,j, we can make $|\mu_{ij}|\leq \frac{1}{2}$ as follows:

STRAIGHTEN-ELEMENT(i, j)

- $\begin{array}{ll} 1 & m \leftarrow [\mu_{ij}] \\ 2 & b_i \leftarrow b_i mb_j \\ 3 & \textbf{for } k \leftarrow 1 \textbf{ to } j \end{array}$
- 4 do $\mu_{ik} \leftarrow \mu_{ik} m\mu_{ik}$

STRAIGHTEN-ELEMENT takes O(n) arithmetic operations. For any fixed i, we can make all $|\mu_{ij}| \leq \frac{1}{2}$ in row i as follows:

STRAIGHTEN-Row(i)

- 1 for $k \leftarrow i 1$ down to 1
- 2 do Straighten-Element(i,k)

STRAIGHTEN-Row takes $O(n^2)$ time. Now, we need to work on getting quasi-ordering. Suppose B is not quasi-ordered and k is the smallest integer such that

$$\frac{3}{4} \|b_{k-1}^*\|^2 > \|b_k^* + \mu_{k,k-1} b_{k-1}^*\|^2.$$

Then we swap rows k-1 and k in B.

The old (k-1)th orthogonal basis element is

$$b_{k-1}^* = b_{k-1} - \sum_{j=1}^{k-2} \mu_{k-1,j} b_j^*.$$

The new (k-1)th orthogonal basis element is

$$b_k - \sum_{j=1}^{k-2} \mu_{k,j} b_j^* = b_k^* + \mu_{k,k-1} b_{k-1}^*.$$

Hence the norm square of the (k-1)th row has decreased by a factor strictly less than $\frac{3}{4}$. These are all the ideas used in the Lenstra-Lenstra-Lovasz algorithm. Pseudocode for the algorithm follows.

```
L^3(b_1, b_2, ..., b_n)
           for i \leftarrow 1 to n
    2
                    do Gram-Schmidt(b_i)
    3
                            b_i^* \leftarrow b_i
                            for j \leftarrow 1 to i-1
                                    do \mu_{ij} \leftarrow \langle b_i, b_i^* \rangle / B_i
                            b_{i}^{*} \leftarrow b_{i}^{*} - \mu_{ij}b_{j}^{*}
B_{i} \leftarrow \langle b_{i}^{*}, b_{i}^{*} \rangle \qquad \rhd B_{i} = \|b_{i}^{*}\|^{2}
    6
           k \leftarrow 2
    8
   9
            while k \leq n
                    do Straighten-Element(k, k-1)
  10
                           if B_k \geq (\frac{3}{4} - \mu_{k,k-1}^2)B_{k-1}
then Straighten-Row(k)
  11
  12
                                                k \leftarrow k + 1
  13
                                  else \triangleright Swap row k-1 and k
  14

\mu \leftarrow \mu_{k,k-1} \\
B \leftarrow B_k + \mu^2 B_{k-1}

  15
  16
 17
                                                \mu_{k,k-1} \leftarrow \mu B_{k-1}/B
                                                B_k \leftarrow B_{k-1}B_k/B
  18
                                                B_{k-1} \leftarrow B
  19
                                                (b_{k-1}, b_k) \leftarrow (b_k, b_{k-1})
  20
                                                for j \leftarrow 1 to k-2
  21
                                                       \mathbf{do} \rhd (\mu_{k-1,j}, \mu_{k,j}) \leftarrow (\mu_{k,j}, \mu_{k-1,j})
  22
                           \begin{array}{c} \mathbf{do} & (\mu_{k-1,j}, \mu_{k,j}) \\ \mathbf{for} & i \leftarrow k+1 \\ \mathbf{do} & \begin{pmatrix} \mu_{i,k-1} \\ \mu_{i,k} \end{pmatrix} \leftarrow \begin{bmatrix} 1 & \mu_{k,k-1} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & -\mu \end{bmatrix} \begin{pmatrix} \mu_{i,k-1} \\ \mu_{i,k} \end{pmatrix} \\ \mathbf{if} & k > 2 \end{array}
  23
  24
  25
  26
                                  then k \leftarrow k-1
  27
            return (b_1, b_2, ..., b_n)
```

The following begins a proof that algorithm L^3 terminates. The proof is concluded tomorrow.

Proof: Define

$$d_i = |\det(\langle b_j, b_k \rangle)_{1 \leq j, k \leq i}|.$$

This is equal to

$$= \left| \det(\langle b_j^*, b_k^* \rangle)_{1 \le j, k \le i} \right|$$

$$= \prod_{j=1}^{i} \|b_j^*\|^2$$

for $0 \le i \le n$. It is easy to see each d_i is a positive integer, $d_0 = 1$, and $d_n = (d(L))^2$.