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Abstract

We began discussion on Lattice Basis Reduction. First, we reviewed select topics in lattices and
linear algebra. Then we went on to discuss the 60° Algorithm for reducing lattice bases in 2
dimensions. Finally, we calculated bounds for the length of a short vector in both the 2-dimensional
and the generalized n-dimensional lattice reduction.

1 Introduction to Lattices

Definition 1.1. Let by, bs, ..., by € R” be linearly independent vectors. Then the set

L= {icibi 1 G EZ}
=1

is a lattice and {by,ba, ..., by} is a basis for the lattice.

Note that the coefficients ¢; are integers but the components of the vectors by are not necessarily
integers.
We can form a matrix from the elements of the basis as follows:

b1
b

B = i

bm

We usually assume that m = n, so that B will be a square matrix. Every lattice has at least

one basis and, in fact, has at least 2, except in the trivial case. When there is more than one basis,
we can easily transform one basis into another using elementary row operations.

Proposition 1.2. Let B be a matriz formed from the basis of a lattice, as indicated above. Let B’
be the result of any number of elementary row operations applied to B. Then there is a matric U
such that B' = UB and det U € {—1,1}. Furthermore, any basis for L can be obtained this way.

Proof. We prove only the last statement. Assume that m = n. Suppose {bi,ba,..., by} and
{b},bh, ..., b} are both bases for L. Let by = (b;1, bi2, . .., bp1) and b} = (b, b, ..., b);). Let
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and
/ /
bll o bln
B/ — . .
/ /
nl 7 bnn

Each bé is an integer linear combination of the b;’s and we can express this as b;j = Zzzl Uik bk
Let

Ul o Ulp

Unl -+ Unpn

Then we get B' = UB. Similarly we get B = U’B’ for some integer matrix U’. Therefore,
U''=U' and detU = 1/detU’. But detU,detU’ € Z. Therefore, detU € {—1,1} i.e., detU
must be a unit in Z.

U
In addition to the above results, we can conclude that |det B| = | det B'|.
Definition 1.3. d(L) = | det B| is an invariant over different bases B for the lattice L.

Geometrically, we can think of |det B| as the area of a parallelogram in 2-dimensional space.
In n-dimensional space, this corresponds to the volume of the parallelepiped with vertices from the
set generated by > i {0, 1}b;.

Theorem 1.4. A set of linearly independent vectors {b1,...,bn} C L is a basis if and only if
there is no element of the lattice in the interior of the corresponding parallelepiped.

2 Review of Linear Algebra Concepts

Definition 2.1. If x = (21,...,2,) and y = (y1,-. ., Yn), then their inner product is

n
(x,y)= Zﬂﬁiyi =T1y1 + T2Y2 + -+ Tpln.
i=1

Definition 2.2. The Fuclidean length of a vector x is

x|l = /2 + a3+ +af = V(x,%).
2.1 Some useful properties of inner products
L (x,x) = [[x|]*.
2. (x,y) =0 if and only if x and y are orthogonal.

3. (x,y) = (y,x%).
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Figure 1: Orthogonal projection of y onto x in 2-dimensional space.

4. (ax,by) = ab{x,y), where a,b € R.

-
5. (x,y+2z) = (x,y) + (x,2).
-

6. (x,y) = ||x]| - ||z||, where z is the projection of y onto x (see Figure 1 for an example in

2-dimensional space). If they are orthogonal, then |z| = 0.

3 Short Vectors and Orthogonal Bases

A given lattice L may have many different bases. Some of these bases are “better” than others, as
shown in the following example.

Example 3.1. Let L be the integer lattice in R%. L has a standard basis with matrix representation

10
s (10).

Adding 100 times the first row of B; to the second row, we obtain another basis with matrix

representation
1 0
B2 = ( 100 1 )

Adding 33 times the second row of Bs to the first row, we obtain a third basis with matrix

representation
3301 33
Bs = ( 100 1 )

In many applications, we want to find a short vector in L. Intuitively, a short vector is an element
v € L such that ||v|| is small. This notion will be made more precise later.

The basis By is “nice”, because it consists of short, orthogonal vectors. The basis Bs is “lousy”,
because it consists of long vectors that are close to being in the same direction. In any basis for
L, the area of the parallelogram formed by the two vectors in the basis must be 1. It follows that
a basis in which the basis elements are nearly orthogonal will have “short” vectors, and a basis in
which the basis elements are nearly parallel will have “long” vectors. This intuitive observation is
true for lattices in higher dimensions as well.
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4 Gram-Schmidt Orthogonalization

Given any basis {bq,...,by} for a subspace of R™, the Gram-Schmidt algorithm produces an

orthogonal basis {bj,...,b}} for the same subspace. The elements in an orthogonal basis satisfy
(b}, b;"> =0 for all 4 # j. We create the orthogonal basis by setting
b){ — b]_
* <b2’ b41<> *
b — bz — PR
2 (bi,bj) !
(bg, bi) (b2, b3)
by bz — * ok b — PR
’ (b3,b) ' (b}, b})
i—1
btk - 17 J *
1 * * .]
j—1 bJ ? bJ

We can also rewrite the relations above as

b; —b*+z bj’b}

Define p;; = 1, and define
(bi, b})
Hij = <b* b*>

3

for 1 < j < i < n. Intuitively, the quantities |u;;| measure how close the original basis is to being
orthogonal. In particular, each p;; is O precisely when b; and bJ?‘ are orthogonal.

5 Two-dimensional lattices

The algorithm in this section comes from Kannan’s paper [1]. We start with a basis {b1, b2}
for a lattice L. We want to get a basis {b},bs} for L in which b} is “short”. Note that, in
this particular case, the Gram-Schmidt algorithm sets bj = by and b3 = ba — u21bj, where
w21 = (b1,b2)/(b1,b1). Unfortunately, while {bj, b3} is a basis for the subspace spanned by
{b1, bs}, it is not a basis for the lattice L unless us; happens to be an integer. So, let m be the
integer closest to p21, and set

b, = by
bl2 = bg—mbl.
Then

|(b,b3)| = [(bz —mbi,b1)]
|(ba, by) — (mby, by)]
= |p21(b1,b1) —m(bq,by)]

1
= u21r —ml-|ba? < §||b1||2-
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repeat
swap by and bs. { Now ||by|| < [|bz]|. }

(b2.b1)
H21 < (B by

m «— the unique integer in (,u21 — %, po1 + %]
blz — bz - mbl.
{ Now b; and b}, form a basis for the lattice,
and the angle between these vectors is at least 60°. }
b2 — blz
until by | < bl
return {bq, ba}.

Figure 2: The 60° algorithm

In words, this inequality means that the length of the projection of b, in the direction of b} is
at most half the length of b}. Hence, the angle between b, and bj is in the range [60°, 120°] or
[240°, 300°].

These ideas lead to the algorithm in Figure 2. Assume that the initial vectors satisfy ||by|| >
Iball.

Note that this algorithm does terminate, since the values of ||bz|| at the end of each loop iteration
form a strictly decreasing sequence of positive integers, which cannot continue indefinitely.

Now, if a is the angle between by and ba, then

d(L) =

b .
det ( b1 >‘ = |[by]| - [[ba] - [sina].
2

Since 60° < a < 120° or 240° < a < 300°, we know that |sina| > v/3/2. So d(L) > ||by] -
bzl - v/3/2, and ||by|| - ||b2|| < 2d(L)/v/3. Since ||by|| < |bz|| when the algorithm terminates, we

conclude that 12
d(L)
Iball < (—) .
V3/2

We can use this inequality as the definition of what it means for by to be a short vector relative
to the lattice L.

Example 5.1. Given b; = (9, —7) and by = (7, —6):
Swap the vectors: b; = (7, —6), ba = (9, —7).
_ 63442 _ 105
H21 = 49736 ~ 85 °
The closest integer is 1; m = 1.
by =b) = (9, 7) 1(7, 6) = (2,—1).
Is ||b1]| < ||b2||? No; repeat.
Swap the vectors: b; = (2, —1), ba = (7, —6).
— 1446 _ 4
H21 = "3 :
by = bl2 = (77 - ) - 4(27 _1) = (_1a _2)'
Is [|b1]| < ||b2]|? Yes; return by and bs as the basis.

Finally, verify that this agrees with the stated bound:

bl = V5 < (S22 = (525)"V>
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6 “Short” Vectors in the n-Dimensional Case

Theorem 6.1. (Minkowski’s Theorem — see Kannan’s paper [2])
If S is a closed, convex, symmetric (about the origin) set in R™ and has volume at least 2",
then S contains at least one nonzero point of the integer lattice, Z — {0}.

We define the following properties of S:
1. The boundary of a convex set forms a convex shape.

2. A closed set contains its perimeter and all interior points.

3. If a set A is symmetric about the origin, then for any v € A, —v € A.
Additionally, a set that contains the interval [—1, 1], along each of n dimensions, has volume 2".

Theorem 6.2. (Kannan’s Theorem [1])
If L is an n-dimensional lattice, then L contains a nonzero element v such that

Ivll < Va(d(L))/™

This theorem provides us with a definition for “short” vectors in n dimensions. It employs
Minkowski’s theorem but does not provide an algorithm.

Proof. Let {by,ba,...,b,} be a basis of a lattice L and let
by
by
B=| "
b,
Define T = {(x1,Xa,...,%X,) : —d(L)" < x; < d(L)"/™}. T has volume 2"d(L). T is closed,
convex, and symmetric. Hence, so is TB~!. So, TB~! has volume 2"d(L)/d(L) = 2". By
Minkowski’s Theorem, there is a y € TB~! NZ" — {0}. Then v = yB is a nonzero element of

TN L—{0}. The longest vector in T is (1,1,...,1)d(L)"/", and it has length \/n(d(L))*/™. Hence,
since v e T, ||v|| < v/n(d(L))Y/™. O
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