Scribe Notes for Algorithmic Number Theory Class 20—June 15, 1998

Scribes: Yizhong Wang, Jeremy Rotter, and Wen Wang

Abstract

The Berlekamp and Cantor-Zassenhaus algorithms for polynomial factorization are covered in this section.

1 The Berlekamp Algorithm

Let $R = \mathbb{F}_p[x]/(f)$ where $f = f_1 f_2 \cdots f_r$. Define $\tau(x) = x^p$ for any $x \in R$, and let

$$B = \{a \in R : a^p = a\} \supseteq \mathbb{F}_p.$$

We know that

$$R \cong \mathbb{F}_p[x]/(f_1) \oplus \mathbb{F}_p[x]/(f_2) \oplus \cdots \oplus \mathbb{F}_p[x]/(f_r),$$

so let $\rho(a) = (a_1, a_2, \dots, a_r)$ be the isomorphism between the two.

Now we will work out a polynomial factorization by using the Berlekamp algorithm.

Example 1.1. Let p=3 and $f(x)=x^5+x^2+2x+1$. Then $\tau(x)=x^3$. In order to use the Berlekamp algorithm to find a factor of f, we need the linear transformation T as defined in the previous section. Using $\{1, x, x^2, x^3, x^4\}$ as the basis of $\mathbb{F}_p[x]/(f)$, it is easy to see that

$$\tau(1) = 1
\tau(x) = x^3
\tau(x^2) = x^6 = 2x^3 + x^2 + 2x
\tau(x^3) = x^9 = 2x^4 + x^3 + x^2 + 2x + 2
\tau(x^4) = x^{12} = x^2 + 2.$$

The matrix representation of T is

$$\left[\begin{array}{ccccc} 1 & 0 & 0 & 2 & 2 \\ 0 & 0 & 2 & 2 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 \end{array}\right],$$

and hence, T-I is

$$\left[\begin{array}{cccccc} 0 & 0 & 0 & 2 & 2 \\ 0 & 2 & 2 & 2 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 \end{array}\right].$$

Using row reduction on T-I, we get

$$\left[\begin{array}{ccccc} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right].$$

From this, we can see that $B = \ker(T - I)$ is of dimension two¹ and a vector $(v_0, v_1, v_2, v_3, v_4) \in B$ if and only if $v_1 = v_2 = v_3 = -v_4$. So, we know that $a = (1, 2, 2, 2, 0) \in B$ and the corresponding polynomial representation of a is $x^4 + 2x^3 + 2x^2 + 2x$.

Next, we calculate $\gcd(a-\alpha,f)$ for every $\alpha\in\mathbb{F}_p$ and we know for sure that 2 of them will be nontrivial factors of f. The results are

$$\gcd(a - 0, f) = 1$$

$$\gcd(a - 1, f) = x^{3} + 2x + 1$$

$$\gcd(a - 2, f) = x^{2} + 1.$$

So, $x^3 + 2x + 1$ and $x^2 + 1$ are factors of f. The algorithm may return any of them, depending on which one it finds first.

The following are true about this process:

- 1. Time complexity of finding T is $O((d + \lg p) \lg^2 f)$, where d is the degree of f.
- 2. Time complexity of row reduction is $O(rd^2 \lg^2 p)$, where r is the rank of the matrix.
- 3. If f has at least two distinct monic irreducible factors, then the time complexity of the Berlekamp algorithm is $O((d+p) \lg^2 f)$ bit operation.
- 4. The Berlekamp algorithm is a deterministic algorithm but not a polynomial time one.

2 Cantor-Zassenhaus Algorithm

We assume that p is odd. From the previous discussion, we know that the Berlekamp algorithm is not a polynomial time algorithm. The problem is that after it finds a it checks all the elements of \mathbb{F}_p to find the factor. To find the factor, we may also check whether $\gcd(a, f)$ is a nontrivial factor. If not, $a = (a_1, a_2, \dots, a_r)$, where all a_i 's are non-zero. Consequently, $a^{(p-1)/2} = (\pm 1, \pm 1, \dots, \pm 1)$. If there are different signs in this vector, then $\gcd(a^{(p-1)/2} - 1, f)$ is a non-trivial factor. These are the motivations behind the Cantor-Zassenhaus algorithm.

The Cantor-Zassenhaus algorithm can be implemented using the pseudocode in Figure 1.

Theorem 2.1. The probability that CZ fails is at most $1/2^{r-1}$. The time complexity of CZ is $O((dgf + \lg g) \lg^2 f)$.

Now, we do an exercise where we illustrate the Cantor-Zassenhaus algorithm.

¹This implies that f can be factored into 2 irreducible factors.

```
CZ(f) \\ 1 \quad \text{Find the linear transformation } T \text{ for which } Ta = a^p \text{ for all } a \in R. \\ 2 \quad \text{Compute the kernel of } T-I \text{ and let } \{b_1,b_2,\cdots,b_r\} \text{ be a basis.} \\ 3 \quad \text{if } r = 1 \text{ then return "f is irreducible"} \\ 4 \quad \text{Choose } x_1,\cdots,x_r \in \mathbb{F}_p \text{ uniformly at random.} \\ 5 \quad a \longleftarrow \sum_{i=1}^r x_i b_i \\ 6 \quad g \longleftarrow \gcd(a,f) \\ 7 \quad \text{if } 0 < \deg g < \deg f \text{ , then return } g \\ 8 \quad s \longleftarrow a^{(p-1)/2} \\ 9 \quad g \longleftarrow \gcd(s-1,f) \\ 10 \quad \text{if } 0 < \deg g < \deg f \text{ , then return } g \\ 11 \quad \text{return "bad luck".} \\ \end{cases}
```

Figure 1: Cantor-Zassenhaus Algorithm.

Exercise 2.2. Factor $f(x) = x^3 + x^2 + x + 1$ over \mathbb{F}_3 using CZ. First, we need to find the matrix representation of T. Choose the basis $\{1, x, x^2\}$ of $\mathbb{F}_3[x]/(f)$. We can compute that

$$\tau(1) = 1$$

 $\tau(x) = x^3 = 2x^2 + 2x + 2$
 $\tau(x^2) = x^6 = x^2$

The matrix representation of T is

$$\left[\begin{array}{ccc} 1 & 2 & 0 \\ 0 & 2 & 0 \\ 0 & 2 & 1 \end{array}\right],$$

so T-I is

$$\left[\begin{array}{ccc} 0 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 0 \end{array}\right].$$

Now we can see that $B = \ker(T - I)$ is of dimension 2 and $\{1, x^2\}$ is a basis. Now, suppose we randomly choose $a = 2x^2 + 1$. By using Mathematica, we find that $\gcd(2x^2 + 1, x^3 + x^2 + x + 1) = x + 1$, so x + 1 is a factor. Actually, we can see that f(x) has two factors, X + 1 and $X^2 + 1$.

3 Next Time

Next time, we will begin to discuss lattice reduction.