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Abstract

This class continued the review of number theory. We defined multiplicative functions, Euler’s
¢-function, and the Md&bius function; we also stated the Mobius inversion formula. We introduced
some notations relevant to the asymptotic growth rate of functions. Finally, we discussed formu-
lae for approximating sums by integrals, approximating integrals by bounding error terms, and
approximating sums of functions over primes.

1 Function Definitions

1.1 Multiplicative functions

A function for which
f(mn) = f(m)f(n)

whenever m and n are relatively prime, is said to be multiplicative. Euler’s ¢-function and the
Mobius function (defined below) are each multiplicative.

1.2 Euler’s ¢-Function

Fuler’s ¢-function is defined on positive integers as follows:

This function counts the number of integers less than or equal to n that are relatively prime to n.
For prime numbers p, all integers less than p are relatively prime to p and so

d(p)=p—1

More generally (see equation 2.2 in the text), if n has prime factorization
n=piipg - - pik

where e; > 0 for each 7, then

¢(n) = [I i~ 1)pf"

1<i<k

The proof for this equation is given as the solution to exercise 7 in Chapter 2 and may be found
on page 319. Table 1 lists values of ¢(n) for 1 < n < 10. As stated earlier, the ¢ function is
multiplicative.
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n || ¢(n) | Valuesof k <n | u(n) Comment
with ged(k,n) =1

1 1 {1} 1 | product of 0 primes

2 | 1 127 1

3 2 1,2} 1

4 2 {1,3} 0 divisible by 22

5 | 4 1,234 1

6 2 {1,5} 1 product of 2 primes

71 6 {1,2,3,4,5,6} 1

8 4 {1,3,5,7} 0 divisible by 22

9 6 {1,2,4,5,7,8} 0 divisible by 32

10 4 {1,3,7,9} 1 product of 2 primes

Table 1: Values of ¢(n) and p(n) for 1 <n < 10.

Example 1.1. Since 2 and 5 are relatively prime,

?(2)p(5) =1 x4 =4=¢(10).
However, note that
d(5) X ¢(5) =4 x 4 =16 # 20 = ¢(25).

This inequality does not violate the definition of multiplicative functions, since ged(5,5) # 1.

1.3 Mobius Function

The Mobius function p is defined for positive integers n as follows.

(n) = 0 if n is divisible by a square larger than 1
H - (—1)* if n = pips - - - py, the product of ¢ distinct primes.

The Mo6bius function is also multiplicative. To see this, let m and n be relatively prime. If either
m or n is divisible by a square greater than 1, then mn is also divisible by a square greater than
1. So u(mn) = 0 = p(m)u(n), since one of the latter two factors must be zero. If neither m nor
n is divisible by a square greater than 1, we have m = pips---p: and n = qiqo - - - qs for primes
Ply-- 3Pt q1, - - -, qs. These primes must be distinct, since m and n have no common factors. Thus,
pu(mn) = (=1)1 = (=1)(=1)* = u(m)pu(n), as desired. Table 1 lists values of u(n) for some small
values of n. Note that for any prime p, u(p) = —1.

2 The Mobius Inversion Formula

The Mébius Inversion Formula is useful when we have a function g(n) that is defined in terms of
another function f evaluated at the positive divisors of n, i.e.,

g(n) =3 £(d)

d|n



Scribe Notes for Algorithmic Number Theory Class 2—May 19, 1998 3

Suppose we wish to solve for f in terms of the values of g. The Mobius Inversion formula
(Theorem 2.3.1) states that
n
f) =Y g (%)
din
Example 2.1. Let f(n) = n%. Set g(n) = > djn d?. For n = 10, let us verify explicitly that
10
10) =100 = d — .
£(10) = 100 %u( )g(d)

First, calculate the values for g(n) at the divisors of 10:

g(10/1) = g(10) = 12+22+5%24+102 = 130
g(10/2) = g(5) = 12 + 52 = 26
9(10/5) = ¢(2) = 1% 4 22 =
9(10/10) = g(1) = 12 -
Next, find p(d) for the divisors of 10 (cf. Table 1):

p(l) = 1

n2) = -1

p(5) = -1

u(10) = 1

Finally, sum the values p(d)g(10/d):
1x130-1x26—1x5+1x1=100
We can also write this calculation as
(12 + 22 4+ 5% +10%) — (12 + 5%) — (12 4+ 22) + (1%) = 102

Note that the Mobius Inversion Formula is somewhat reminiscent of the popular Inclusion-
Exclusion Principle from CS 5024. The formula can actually be proved as a corollary to that
principle. One more useful property of the Mobius function is given by Lemma 2.3.3:

1 ifn=1
;M(d) o { 0 otherwise.

3 Asymptotic Growth Rates of Functions

In order to better understand the behavior of functions, they can be compared to other well-known
functions. These comparisons allow us to infer relationships about the similarity in growth rates
of functions as the functional parameter tends to oco.

We will use the following notation to describe the relative growth rates of functions. Detailed
technical definitions of these symbols are given in Definition 2.4.1.
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e f(n) = O(g(n)) if f grows no faster than g. This ‘Big O’ relationship is akin to a <
comparison. Constant factors are ignored in this relationship.

Example 3.1. 3n? + 4n — 7 = O(n?).

e f(n)=Q(g(n)) if f(n) grows at least as quickly as g(n) (“f > g”).
e f(n) =0(g(n)) if f(n) grows at the same rate as g(n), ignoring constant factors (“f = g”).

e f(n) =o0(g(n)) if f(n) is smaller than g(n), i.e., lim,_, o % = 0. This ‘small o’ notation is

similar to a strict less-than relationship. In this relationship, additive terms are important.

Example 3.2. Recalling the prime number theorem, we can rewrite it as:

me = logz 0 log

Here, the second term represents the error, and it is asymptotically “smaller” than the first

term.
e f(n) ~ g(n) if lim, % = 1. Note that, in this one case, constant factors cannot be
ignored.

Example 3.3. Yet another way of stating the prime number theorem is as follows:

(z)

x

~ logz”

4 Approximation by Integrals

4.1 Euler’s Summation Formula (Corollary 2.5.2)

Theorem 4.1. Let f be continuously differentiable on [1,xz]. Then

S 5= [ f0de+ 1)~ @ L2+ [ - 1D f o
1<k<z 1 1

Here, k is an integer, and x is real.

For a proof, see Corollary 2.5.2 in Bach & Shallit [1]. The first term represents the general
approximation and the other terms compensate for the error incurred in the approximation. The
general idea when using this formula is to calculate the approximation term and bound the error
terms.

Example 4.2. (Theorem 2.5.3 in Bach & Shallit [1])
Consider the harmonic series, defined by:
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It is well known that this series diverges when n — oco. To approximate this series for integer values
of n, we can set f(z) = % Then f/(z) = _m%,

Now, by Euler’s Summation Formula,

" dt not— |t
H, = —+1 —
L +1+ /1 2 dt
>t — |t <t — |t
= 10gn+(1/1 2 )%—/n Tdt
Let y denote the constant ( f o LtJ dt), which is called Euler’s constant. The error has now
been reduced to the sum of v and the 1ntegra1 f o0 Iz LtJ “—5—dt. This integral can be bounded above as
follows:
t— |t * dt 1
/ Hdt < / - =0~
n 2 n 12 n
Thus,

1
H, = logn%—v—}—O(ﬁ).

5 Asymptotic Approximation of Integrals

Theorem 2.6.1 in Bach and Shallit [1] provides useful formulae for approximating the asymptotic
behavior of certain integrals. Assume that f is a continuously differentiable function on [a, o).
Assume further that

flz) p

flz) =

for some real constant 4 > —1. If p # 0, then

/m F(t)dt ~ zf(@) (1)

p+1

If u = 0, the same formula holds provided that f’(x)/f(xz) approaches zero “quickly” enough.
Formally, we have

/ " f(t)dt ~ zf(x) )

provided that f'(z)/f(z) = o(1/x).

To gain an intuitive understanding of these formulae, suppose f(x) is the polynomial z#. Then
f'(z) = pxt~! and so f'(z)/f(z) exactly equals p/x. The formula zf(x)/(p + 1) is simply the
antiderivative of f(x) evaluated at the upper limit z. (Note that evaluating the antiderivative at
the lower limit a only changes the definite integral by an additive constant. So we may disregard
this limit when finding asymptotic approximations.) Roughly speaking, the theorem states that
the formula zf(z)/(n + 1) still gives a good approximation for the integral, assuming that the
growth rate of f is “similar to” the growth rate of x*.
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Example 5.1. Consider the integral [, ;4. Let f(z) = 1/(logz); then f'(z) = —1/(z log z) and

2 logt-”
we find that
flay (1
f(z) zlogz \z/)°
Using formula (2) gives
Todt x
5 logt ~zf(z) = logz” (3)
Example 5.2. Consider the integral [ %. Now let f(z) = z/(logx); an easy calculation shows

that f'(z) = (logz — 1)/ log® = and

f'(z) :logx—1:l+o<1)‘

f(z) zlogz x x

So f'(x)/f(z) ~ 1/x. Taking u = 1 in formula (1) gives

/z tdt  xf(z) P (4)
5 logt p+1  2loga’

6 Evaluating Summations over Primes

Suppose we wish to approximate the summation Zp<m f(p), where p runs over all the primes not
exceeding z. Theorem 2.7.1 in Bach and Shallit [1] gives an approximation formula for such sums.
Recall that, by the Prime Number Theorem,

(z) = z_ x
71—ﬂv_loggv 0 logz )~

rodt x
5 logt logz’

By Example 5.1, we know that

So we may write
@=[ 2 e
= — +¢(x
e 5 logt

where the error term €(z) is o(z/logx). Then Theorem 2.7.1 states that

S i = [0 s dworpe) - [ s )
p<z

The first term on the right hand side gives an asymptotic approximation for the sum, assuming we
can bound the remaining two error terms.

Example 6.1. Consider the sum of the primes not exceeding z. Using the formula (5) with

f(z) =z, we get
x d €T
Zp = /2 % + ze(x) — /2 €(t)dt.

p<x
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We saw earlier (Example 5.2) that the first integral on the right hand side can be asymptotically
approximated by z?/(2log ). Since e(z) = o(z/logx), it is clear that the terms ze(x) and [ €(t)dt
are each o(x?/logx). Thus, we obtain the approximation

S o~ i
= 2logx

which is correct up to an additive error term.

7 Next Time

The next class will cover important algebraic structures such as groups, rings, and fields.
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