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Abstract

Today’s class continues with the topic of taking d-th roots in Iy including presentation of the AMM
algorithm. We also begin to explore factoring polynomials.

1 Roots in F;

Let a € F; be an r-th power in Fy where r | ¢ — 1. Adleman, Manders, and Miller developed a
generalization of Tonelli’s quadratic root algorithm for d-th roots, called the AMM algorithm.
AMM (a,r)
1 > Let ¢—1=r°t where r |/t.
> choose h € F; at random
if ple-D/r =1
then Fail
g« h' >{g) = C
(aﬁ at) — (ata ars)
e«—0
for i—0tos—1 . '
9 do 1> select 0 < ¢; < r such that (ag @™ €)™ =1
10 e—e+erir —r 1 (modt)
11 (bTa bt) — (ge/r’ agl)
12 > choose a, 8 such that at + Gr® =1
13 b« bob)
14 return b
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Example 1.1 Let ¢ =19, ¢—1=232,r=3,5s=2,t =2, and a = 11. We will use the following
table for help with computation.

=
*

Ce C|F:|Ce G
1 1 |10|5 18
4 18117 1

9 18| 12|11 18
6 1 13|17 18
146 18
17 1 15|16 18
1m 1 [16|9 1

718|174 1

5 1 ||18[1 18
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First, we compute line 3 of the algorithm to verify we may have a generator. And indeed, 29 = —1
so we can continue. We calculate h? = 4 and assign it to g. Continuing with line 6, we assign to
(ar, at) the value of (112,119), or (7,1). Next, we initialize e to 0 and jump into the loop.

Case i = 0.
eo | arg )" = (7-470)°
011
1|11
2|7

So we select eg = 0. Hence, e remains 0.

Case i = 1.
eo | (7-473%)
017
11
2 |11

Letting e; = 1 gives us the desired result. So e becomes 0+ (1)3, or 3.

Continuing outside the loop, we assign 37! (mod 2) = 1 to »’. Computing the roots in line 11,
we get (br, b)) = (4,1). Choosing o = 5 and 3 = —1 gives us the desired result for line 12. Finally,
we compute the root b to be 4° - 171 which is 17.

The analysis of the AMM algorithm is provided by Theorem 7.3.2 in [1]. It states that AMM
fails with probability 1/r, corresponding to the probability of not selecting a generator in line 2.
The bit complexity of the algorithm is O(r(Igq)?).

2 Factoring Polynomials Over Finite Fields

We will assume for the sake of simplicity that we are working with fields I, where p is simply a
prime. Let f € F,[X]|. Furthermore, assume that f is monic. The work in factoring polynomials is
in finding a non-trivial factor g. In particular, we want to find a factor g such that g | f and degg
is neither 0 nor deg f. Let f = fi* f3? --- f¢ where each f;* is irreducible and monic. To make
this problem interesting, we will also assume that > 1 and ¢; > 1.

NOTE: Suppose some e; > 1. Also assume e; > 2. Then take the formal derivative of f using
the chain rule.

o = X
= a0 S0 00 g0
+ff1(X)'df22(Xii.X.'. ST(X)

So, f1 | f'. If f" 0, then ged(f, f’) is a non-trivial factor. Henceforth we assume that each e; = 1.
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We will introduce some more notation and observations to help develop ideas behind the poly-
nomial factoring algorithm. Recall that by the second version of the CRT, we know

R =Fp[X]/(f) = Fp[X]/(f1) @ Fp[X]/(f2) ® - - - @ Fp[X]/ (f7)-

For some a € R, we define the map p : R — (a1, ag, ..., a,) where a; € F,[X]/(f;). We make two
observations.

1. It b € F, C Fp[X]/(f), then p(b) = (by, b, . .., by).

2. If p(a) = (a1, as,...,a,), has a non-zero component a;, and a 0 component a;; then f; [/a
and f; |/a. Hence, ged(a, f) is a non-trivial factor.

2.1 Berlekamp Algebra
The (absolute) Berlekamp algebra of R is
B={ac R:ad’ =a}.
Note that B is a vector space over I, of dimension r and has p" elements. Also, F, C B.

THEOREM 1 (Theorem 7.4.11n [1]) If a € Fp[X]/(f), then a € B if and only if each a; € Fp, for
1< <r.

Proof: p(a) = (a1, as,...,a,). We have the following equalities:

pla)? = p(a?) = (db, db ..., aD).

If each a; € Fp, then a? = a;. Hence, p(a)? = p(a). We conclude that a € B.
Conversely, if a € B, then a” = a implies that a¥ = a; for 1 <4 < r. This implies that

a’ =a; (mod f;).

7

Hence, f; | a — a;. We use the following equality.

xP-xX=][(x-¢
celFy,

fil T (ai=o).

ceFy

Substituting, we get

We must have f; | (a; — ¢) for some c € F,. But deg(a; — ¢) < deg f; implies that a; =c € F,. O

Finding the Berlekamp algebra B lets us know how many irreducible factors there are in R.
Along those lines, we can find out something about B using the Frobenius map 7 : R — R
(7(r) = rP). Recall that 7 is a linear function on R. Since a? —a = 0 for all a € B, B is the kernel
of a linear map 7 — 1 (where 1 is the identity map on R). Hence, the dimension of B is r.

Now suppose that b € B —F,. Let p(b) = (b1, ba,...,b;). We know b; € F,, for all 7, but no all
b; are equal. Then there are 4, j such that b; # b;. Then,

p(b*b]‘):(b1*bj,...,bi*b]‘,...,o,...,br*bj).

Hence, ged(b — by, f) is a non-trivial factor.
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3 Next Time

The next class will begin with a presentation of Berlekamp’s algorithm for finding non-trivial factors
of a polynomial as well as an example of its execution.
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