Scribe Notes for Algorithmic Number Theory Class 18—June 11, 1998 1

Scribe Notes for Algorithmic Number Theory
Class 18—June 11, 1998

Scribes: Nick Loehr, Lynn W. Jones, and Hussein Suleman

Abstract

In today’s class, we continued our discussion of algorithms to find roots in finite fields. We com-
pleted discussion of Tonelli’s algorithm with an example and then went on to discuss Cipolla’s
field theoretic method of finding square roots. Finally, we began looking at methods of finding
generalized dth roots.

1 Tonelli’s Algorithm

We first state the algorithm and then solve two problems using it.

Tonelli (a)

let ¢ — 1 = 25¢, where ¢ is odd.
choose z € IF; at random.

—

if g2~ =1 then fail.
fori «+ 0tos—1do
if (ag=®)(@=D/2"" £ 1 then e « e + 2.
if e mod 2 =1 then fail.
h «— ag—°.
b ge/2h(t+1)/2‘

return b.

Example 1.1. Find the square root of 3 in the finite field Fy3.
Here ¢ =13 s0 ¢ — 1 =12 =22 .3. Thus we can set s = 2 and t = 3. We know that a = 3.
Choose g =5 as a possible generator. Since ¢2° ' =5 = —1 mod 13, g is a suitable choice.
Now set e = 0. There are then two iterations of the for loop since s = 2.
Case i = 0: (ag—)12/2=3%=T = ¢y = 0. Thus e remains 0.
Casei=1: (ag—0)'2/4=3" =T = ¢; = 0. Thus e remains 0.

Example 1.2. Find the square root of 12 in the finite field Fy3.
Here g = 13s0 ¢—1 = 12 = 22.3. Thus we can set s = 2 and t = 3. We know that a = 12 = —1.
Choose g = 5 as a possible generator. Since ¢2° ' =5 = 1 mod 13, g is a suitable choice.
Now set e = 0. There are then two iterations of the for loop since s = 2.
Casei = 0: (ag 0)'%/%2 = ~1° =T = ey = 0. Thus e remains 0.
Case 1 = 1: (ag_0)12/4 S L e1=1. Thuse=0+2=2.



2 Class 18—June 11, 1998 Scribe Notes for Algorithmic Number Theory

2 _ .82 -"7.75°=-"7.35-1.

h=ag ¢=-1-5
To verify the solution : 5° = 25 = T2.
Theorem 1.3. (Theorem 7.1.3 in text)

If a has a square root in Fy where g is an odd prime power then Tonelli(a) returns a square
root of a with probability 1/2. Its time complexity is O ((lg q)4).

This theorem is simply a formalization of Tonelli’s algorithm. The time complexity is attributed
to the exponentiation within the loop in the algorithm. The probability of success is 1/2 because
half of the elements are generators. The fact that it uses this nondeterministic method of finding
a generator is the main drawback of the algorithm.

2 Square Roots: Field theoretic methods

2.1 Background

We can use the additional properties of fields to calculate square roots differently from the group
theoretic methods. Cipolla’s approach is to consider a degree 2 extension of I, where ¢ is odd:

Fq - FQQ.

We need to find an irreducible polynomial in [F; to construct F .

Now, suppose that f(X) = X2 +bX + c is a monic, irreducible polynomial over F,. Let = be a
root of f in Fp.

Then,

22 +br+c = 0
(£ +bx+¢)? = 07 (applying a Frobenius map)
(x2)9 +b929 +c¢? = 0 (since the other terms equal O modulo q)
(x0)2 + brl+c =
Thus, z? is also a root of f.
Therefore, f(X) = (X — z)(X — 29), implying that ¢ = 297! and b = —x — 2%
Cipolla noted that /c = x(@+1)/2_ In his approach, we want to find an irreducible polynomial

where the constant is a and find the square root of this constant term in F2. This is then a square
root of a in F, as well, if it is in F,.

2.2 Cipolla’s Algorithm

To use the Cipolla algorithm to find a square root for a given a, we need an irreducible polynomial
of the form

f(X)=X? tX +a.

We can randomly guess a t € Fy; a “good” guess for ¢ will result in an irreducible f. We can use

the quadratic formula,
= t+Vt2 —4a
=G



Scribe Notes for Algorithmic Number Theory Class 18—June 11, 1998 3

and know that if (£ — 4a) is not a square in F,, then f is irreducible.
Here is the algorithm:

Cipolla(a)

choose t € Fy, uniformly at random.

if (t* — 4a) is a square in F,, then fail. {f is not irreducible}
f X2 _tX +a.

b X(@1/2 med f.

return b.

We may impose the additional test that if b ¢ F, then a does not have a square root in [F,.
Since Cipolla does not have the for-loop that Tonelli has, it is faster and executes in O((Igq)?)
bit operations.

Example 2.1. In Fy7, we have ¢ = 17 and ¢ — 1 = 16 = 2*. Suppose we wish to find the square
root of a = 8.

Chooset =1. Thent? ~4a=1" - 4+8=1-32="31 =3.

Use the Legendre symbol to determine if 3 a square in Fy7:

-0
17 3 3 )
So t? — 4a is not a square in Fy7.

f=X?>-X+38.

b= X% mod (X% - X +8) =12.

So, 12 is a square root of 8 in F17. We verify that 12

— Fand —5° =25 =38

Example 2.2. In Fy7, we have ¢ = 17 and ¢ — 1 = 16 = 2%. Suppose we wish to find the square
root of a = 3.

Chooset =5. Then t2 —4a =5 —4%3=25—12 =13 = _4.

But —4 = gg, so fail.

Next, choose t = 7.

Then t? —4a=7"—4%3=49 - 12 =3,

From the previous example, we know this ¢ is good.

f=X%2-T7X+3.

b= X% mod (X2 -7X +3) =2X +10.

So, b is a square root of 3 in ;2. Unfortunately, this square root does not lie in Fy7.

—_

2.3 Analysis of Cipolla’s Algorithm

Consider the probability of randomly choosing an acceptable t in Cipolla’s algorithm. The following
lemma shows that this probability is roughly 1/2 for large q.

Lemma 2.3. (Lemma 7.2.1 in the text) Suppose the element a is a square in Fg. Ift is chosen at
random from Fy, then t* — 4a is a non-square with probability (g — 1)/2q.



4 Class 18—June 11, 1998 Scribe Notes for Algorithmic Number Theory

Proof. To determine how many such polynomials in I, are irreducible, we can count the ones that
are reducible and take the complement.

A reducible polynomial f in the form X2 — ¢X + a has a linear factor, X — a for some « € F,.
Since a € Fy, o cannot be 0 (or a would be 0). Then X? tX+a= (X)X —a/a). The
elements in F, for which o # \/a are distinct factors of f.

There are ¢ — 3 elements that are not square roots of a. For each one, we get a polynomial of
the correct form, and each such polynomial is counted twice. So we get (¢ — 3)/2 polynomials. We
also have the two square roots of a, so there are (¢ —3)/2+2 = (¢ + 1)/2 polynomials of the form
X2 —tX + a that split over F,. There are g total polynomials. Taking the complement of our set
shows that there are (¢ — 1)/2 “good” choices for t. The probability that #> — 4a is a non-square
inF,is (¢ —1)/2q. O

Theorem 2.4. (Theorem 7.2.8 in the text) Cipolla’s algorithm fails with probability 1/2 + 1/2q.
If it does not fail, then it returns a square root of its argument in a quadratic extension Fp2 of F,.
Its time complexity is O((1gq)?).

3 Computing dth Roots in Finite Fields

Recall that Tonelli’s algorithm used properties of the cyclic multiplicative group of F,; to compute
square roots in F,. By generalizing the argument used to derive the algorithm for square roots, we
obtain an algorithm that computes dth roots for any d > 2. As before, computing a dth root is
quite easy if d is relatively prime to the order of the multiplicative group Fy.

Theorem 3.1. (Theorem 7.3.1) If d is relatively prime to q — 1, then we can compute dth roots
in F in O((1gq)*) bit operations.

Proof. Using the extended Euclidean algorithm, we can find e such that

de=1 (modq—1)

in O((lgq)?) operations. Then a® is the unique dth root of a in Fy, since (a)? = a*¢ = a! = a.

The exponentiation a® requires O((lgq)?) bit operations. O

Now suppose ged(d,g— 1) = k > 1. To find a dth root of a, we can find a kth root of a, say b,
and then find a (d/k)th root of b using Theorem 3.1. To find the kth root of a, we use one prime
factor of k at a time. For example, to take a twelfth root of a, we first compute a square root of
a, say ag. Then take a square root of as, say a4. Finally, take a cube root of a4, which is a twelfth
root of a. Abusing notation slightly, we can write

a1/12 — ((a1/2)1/2)1/3'

Thus, it suffices to consider the problem of taking an rth root of a, where r is a prime dividing
qg— 1.

Adleman, Manders, and Miller generalized Tonelli’s algorithm to cover this case. First, write
q — 1 = r°t, where s > 1 and r does not divide ¢. Since r is prime, r° and t¢ are relatively prime.
By the Chinese Remainder Theorem,

]F; & CTS X Ct,



Scribe Notes for Algorithmic Number Theory Class 18—June 11, 1998 5

where Cys and C; denote the cyclic subgroups of [y of orders r® and ¢, respectively. Let 7 be the
map that takes z € Fy to (zt,2™") € Cps x Cy. It is easy to check that 7 is a group isomorphism.
Moreover, we can give an explicit formula for the inverse map 771. First, use the extended Euclidean
algorithm to obtain integers a and 3 such that

at + Br® =1.
Then we claim that, for (z,,z¢) € Cps X Ct,
(2, 2p) = a:;f‘a:t’g € Fy.

To verify this claim, note that

T(apa)) = ((apay)’s (af))™) = (@7, 2)") = (@ 77 2l ) = (2, m2).
We can now outline the general strategy for computing an rth root of z € Fy. We first apply
T to = to obtain the pair (z,,z:). Next, find rth roots of z, and x; separately. Finding the root
v¢ of x; is easy, using Theorem 3.1. Finding the root v, of z, is difficult but possible, as discussed
below. Once we have these roots, we apply 7! to the pair (7;, ;) to obtain an rth root of z.

4 Next Time: Computing rth roots in C,-

Consider the problem of finding an rth root of a € C,s, where a is a perfect rth power. Let g
be any generator of Crs. Then a = ¢g° for some integer e such that r divides e. Let the base r
representation of e be

e=¢es 17" Fesor® 24 -4 egr + e,

where 0 < e; < r for each i. Clearly, eg = 0, and ¢*/" is an rth root of a. Thus, if we can determine
all of the e;’s, we can find the desired root. The method for determining the e;’s will be covered
next time.

References

[1] E. BAcH AND J. SHALLIT, Algorithmic Number Theory, The MIT Press, Cambridge, Mas-
sachusetts, 1996.



