Scribe Notes for Algorithmic Number Theory Class 17—June 10, 1998 1

Scribe Notes for Algorithmic Number Theory
Class 17—June 10, 1998

Scribes: Cara Struble and Craig Struble

Abstract

We discuss issues about finding a dth root {/a of an element @ in Fy. Formulas for finding dth roots
when ged(d, ¢) = 1 and square roots when ¢ = 2™ and ¢ =3 (mod 4) are given. Finally, Tonelli’s
algorithm for computing square roots in I, when ¢ is the power of an odd prime is presented.

1 Preamble

We now look at the problem of finding a dth root of a in a finite field IFy; that is, given a € (IFy)*,
find an z € (F,)* such that z¢ = a. (F,)* is a cyclic group of order r = ¢ — 1. Since cyclic groups
of the same order are isomorphic, we study the cyclic group C, = {0,1,...,r — 1} 2 Z/(r) as an
additive group. Let f;: C,. — C; be the following map,

fale) = d-c=c+c+---+c.
——
d

There are two cases to consider for finding dth roots in F,.

1. If ged(d,r) = 1, then f; is a 1-1 function, that is, a permutation of elements in C,. Every
element of C, has a unique dth root. Use the extended Euclidean algorithm to find y and z
solving the equation

yd+ zr = 1.
Then, z = y - a is a dth root of a as shown in the following equation:

d-(y-a) = (1—2r)-a=a.

2. If ged(d,r) = k > 1, then f; is a k to 1 function, that is, a group homomorphism
Or - Cr/k

In this case, think of first finding a kth root of a, call it b. Second, find a (d/k)th root of b.
For b to exist, we must have k | a. Dividing by k requires that we know a as a multiple of
some generator g of C.,

—
J

Then b = % - g. All of the kth roots are (% + %) - g where 0 <17 < k.



2 Class 17—June 10, 1998 Scribe Notes for Algorithmic Number Theory

As an example of this second case, consider when r = 15 and d = 3. Then the map f3 is a
map from Cj5 to a cyclic subgroup of order 5 isomorphic to Cs. The following table shows
the images of f3, where g is a generator of Cis.

8
»
—~~
E

— =
—o PP TLEE S

[y
[\
A A O SIS ESECREES

13-
14 -

— — =
NP PP P PP TR
R A N SIS N R S S

Notice that {0-¢,3-¢9,6-9,9-g,12-g}is a cyclic subgroup of order 5, with 3-g as a generator.
Since C15 2 Z/(15) =2 Z/(3) ®Z/(5), we can view finding a dth root in Ci5 as independently
finding a dth in Z/(3) and Z/(5).

2 Square Roots: Group Theoretic Methods

There are two methods of solving the root finding problem that we will study: group theoretic
methods and field theoretic methods. Section 7.1 introduces the group theoretic methods for
finding dth roots in F,. This first theorem is a direct consequence of the first case discussed in the
preamble.

Theorem 2.1 (Theorem 7.1.1). Let G be a group of odd order m, written multiplicatively. Let
a € G. Then, the equation z*> = a has a unique solution in G, which is a(m+1/2,

Proof. Using the notation from the preamble, d = 2. Now find a multiplicative inverse of 2 in

Z/(m). That inverse is ™41, So, a(m+1)/2 is the square root of a. O

How expensive is finding a square root in G?7 Recall that the complexity of exponentiation is
O(slogm) where s is the cost of multiplication. The next corollary shows that in some (F,)* the
time complexity of finding a square root is O((lgq)?3) bit operations.

Corollary 2.2 (Corollary 7.1.2). If ¢ =2" orq =3 (mod 4), then square roots in Fy can be
computed in O((lgq)?) bit operations.

Proof. First, suppose ¢ = 2". Then, ¢ — 1 is odd, so gcd(2,q—1) =1.2-2" 1 =1 (mod 2" —1).
So a2"™" is the square root of a.



Scribe Notes for Algorithmic Number Theory Class 17—June 10, 1998 3

Now, suppose ¢ =3 (mod 4). The square map takes (IF;)* to a subgroup of order %; that
is,

fa: (Fg)* — ((Fg)*)*.

Let g be some generator in (F,)*. If a has a square root, then a € ((F,)*)? and a = g*. ((F,)*)?

has odd cardinality, because ¢ =3 (mod 4). We want a multiplicative inverse of 2 in Z/ (%);

1 1
0L 9T 1 (mod (g—1)/2).
4 2
Hence, a(?t1)/4 is a square root of a. O

Now, consider the more general case of finding square roots in F, for any odd ¢q. Write ¢ = 2°¢,
where s > 1 and t is odd. Since

(Fg)" = Z/(2°) x Z/ (1),

we may write a = bc, where b € Z/(2°) and ¢ € Z/(t). We can use previous results to get
\/E — o(t+1)/2

Now consider successive applications of fa to (F,)*. Suppose f> is applied s times,

(F)* & F) B B (w,)
S t;r;les.

Each map permutes Z/(t) and halves the image of Z/(2°%) s times. Thus, considering successive
images, we have
fa fa f2 ~
Gs =5 G155 Go=H=Z/t).

From this, we get
H=GyCG C - CG,=(F,)".

Example 2.3. Suppose ¢ = 17, hence ¢ — 1 = 16 = 2% - 1. Also suppose g generates (F,)*. Look
at the chain of subgroups from applying f> to (Fq7)*.

Gy = (Fi7)"

G3 — {90’92’ 94’96’98’ 910’912’914}
Gy = {¢°,9%4%9"}

G = {¢° 4%

Go = {g%

These observations about (F,)* when ¢ is odd lead to Tonelli’s Algorithm for finding square

roots in (Fy)*.



4 Class 17—June 10, 1998 Scribe Notes for Algorithmic Number Theory

3 Tonelli’s Algorithm

We continue to use the notation from the previous section, in particular the definitions of s and
t. To begin Tonelli’s algorithm, choose a random element z € (F,)* and compute g = z!, which
forces the component of z in Z/(t) to the identity. With probability %, g is a generator of Z/(2%).
Assume g is a generator. Then,

a = g°h
where 0 < e < 2% —1 and h € H. Write the binary representation of e,
e = e 125 e 9252 4o f 24 ¢

where e; = {0,1}.

How do we compute the e;’s? If a(¢1/2 £ 1, then ¢y = 1 (which implies a does not have a
square root). If (ag‘eo)(q_l)/4 # 1, then e; = 1. If (ag_(2€1+€0))(q71)/8 # 1, then e; = 1. Keep
iterating this process to compute each e;. Algorithmically, we accumulate e as

e «— 0

e «— €

e «— 2e1+eg

e <« 4deg+2e;+ep

Tonelli’s algorithm is presented as pseudo-code below.

TONELLI(a)
1 > Computes b=+/ain (Fy)* ¢ odd

2 let ¢q—1=2°%, where ¢t is odd.

3 choose a random z € (F,)*

4 — 2

5 ifg2 =1

6 then error “g is not a generator of Z/(2%)”
7 e—0

8 fori+—0tos—1

9 do if (ag—©) @ V/*" 21
10 then e «— e + 2
11 ifemod2=1
12 then error “a does not have a square root”
13 h+«ag *©
14 b ge/2h(t+1)/2
15 return b



