Scribe Notes for Algorithmic Number Theory Class 16—June 9, 1998

Scribes: Yizhong Wang, Wen Wang, and Jeremy Rotter

Abstract

This section covers the Euclidean algorithm and continued fractions in a field of Laurent series. The structure for $\mathbb{K}[x]/(f)$ is also discussed.

1 Euclidean Algorithm

Definition 1.1. For a polynomial f, define

$$dgf = \begin{cases} 1 & \text{if } f = 0; \\ 1 + \deg f & \text{if } f \neq 0. \end{cases}$$

Theorem 1.2. (6.2.4. from text) Given nonzero polynomials $u, v \in \mathbb{K}[x]$, the extended Euclidean algorithm returns a and b such that $au + bv = \gcd(u, v)$, using $O((\deg u)(\deg v))$ bit operations in \mathbb{K} . Moreover, if $\deg u > \deg v > 0$, then we have $\deg a < \deg v$ and $\deg b < \deg u$.

2 Continued Fractions

Theorem 2.1. (6.3.1. from text) An element $f \in \mathbb{K}((1/x))$ is rational if and only if its continued fraction expansion is finite.

Example 2.2. Let

$$f(y) = \frac{x^4y^3 + xy + 1}{x^3y^2 + x^5}.$$

From the previous class, we know the extended Euclidean algorithm gives us

$$a_0 = xy$$

$$a_1 = x^5 + 1$$

$$a_2 = xy + x^3.$$

So,

$$f(y) = a_0 + \frac{1}{a_1 + \frac{1}{a_2}} = xy + \frac{1}{x^5 + 1 + \frac{1}{xy + x^3}}.$$

Theorem 2.3. (6.3.2. from text) Let $f(x) = \sum_{i \geq 0} c_i x^{-i}$ be an element of $\mathbb{K}((1/x))$. Then f is rational if and only if the sequence c_0, c_1, c_2, \ldots satisfies a linear recurrence relation.

Proof. First suppose f = u/v. Write

$$u = \sum_{j=0}^{s} u_j x^j$$
 where $u_s \neq 0$
 $v = \sum_{k=0}^{t} v_k x^k$ where $v_t \neq 0$.

For simplicity, assume $u_j = 0$ when j is outside the range $0, \ldots, s$ and $v_k = 0$ if k is outside the range $0, \ldots, t$.

From the definition of f, we know that $t \geq s$. Now,

$$u = \sum_{j=0}^{s} u_{j} x^{j}$$

$$= vf$$

$$= \sum_{i=0}^{\infty} \sum_{k=0}^{t} c_{i} v_{k} x^{k-i} \text{ substitute } k - i \text{ with } r$$

$$= \sum_{r=-\infty}^{t} \left(\sum_{k=r}^{t} c_{k-r} v_{k} \right) x^{r}.$$

So, for $r \geq 0$, we have,

For r < 0 we have,

$$0 = \sum_{k=r}^{t} c_{k-r} v_k = \sum_{k=0}^{t} c_{k-r} v_k.$$

The second equality holds because $v_k = 0$ if k is outside the range $0, \ldots, t$. Then we get,

$$v_t c_{t-r} = -\sum_{k=0}^{t-1} c_{k-r} v_k$$

or

$$c_{t-r} = \sum_{k=0}^{t-1} \left(-\frac{v_k}{v_t} \right) c_{k-r}$$

$$v_t = \sum_{k=0}^{t-1} \left(-\frac{c_{k-r}}{c_{t-r}} \right) v_k.$$

Making the substitution i = t - r in the first equation, we get

$$c_i = \sum_{k=0}^{t-1} \left(-\frac{v_k}{v_t} \right) c_{i+k-t}.$$

Making the substitution j = i + k - t, we now get

$$c_i = \sum_{j=i-t}^{i-1} \left(-\frac{v_{j-i+t}}{v_t} \right) c_j,$$

so we have

$$c_{i} = \sum_{j=i-t}^{i-1} \left(-\frac{v_{j-i+t}}{v_{t}} \right) c_{j}$$

$$v_{t} = \sum_{k=0}^{t-1} \left(-\frac{c_{k-r}}{c_{t-r}} \right) v_{k}.$$

$$(**)$$

Now we can see that if f(x) is rational, (*) and (**) give the base case and the linear recurrence relation, respectively. On the other hand, if (*) and (**) hold for f(x), we can find a pair of polynomials u and v from (*) and (**) such that $f(x) = \frac{u}{v}$, i.e., f(x) is rational.

The following example is an application of Theorem 2.3, used in pseudorandom sequence generation.

Example 2.4. Let $\mathbb{K} = \mathbb{F}_2$, u = 1 and $v = x^3 + x + 1$. Let t = 3 and s = 0.

- From (*) we get $c_0 = 0$, $c_1 = 0$, $c_2 = 0$, and $c_3 = 1$.
- From (**) we get the recurrence relation, for i > 3,

$$c_{i} = \sum_{j=i-3} i - 1(-v_{j-i+3})c_{j}$$

$$= v_{0}c_{i-3} + v_{1}c_{i-2} + v_{2}c_{i-1}$$

$$= c_{i-2} + c_{i-3}.$$

From this relation, we can generate the pseudorandom sequence,

$$0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, \dots$$

3 The Structure of $\mathbb{K}[x]/(f)$

Theorem 3.1 (CRT version 2). (6.6.1. from text) Let f_1, f_2, \ldots, f_r be polynomials of positive degree in $\mathbb{K}[x]$ that are pairwise relatively prime, and let f denote there product. Then

$$\mathbb{K}[x]/(f) \cong \mathbb{K}[x]/(f_1) \oplus \mathbb{K}[x]/(f_2) \oplus \cdots \oplus \mathbb{K}[x]/(f_r).$$

Theorem 3.2 (CRT version 1). Let f and f_1, f_2, \ldots, f_r be as in the previous theorem. Then there exists a solution $a \in \mathbb{K}[x]$ to the system of congruences

$$a \equiv a_1 \pmod{f_1}$$
 $a \equiv a_2 \pmod{f_2}$
 \vdots
 $a \equiv a_r \pmod{f_r}$.

Moreover, a is unique modulo f and a can be computed in $O((\lg f)^2)$ bit operations, assuming $\deg a_i < \deg f_i$.

Example 3.3. Let $\mathbb{K} = \mathbb{F}_8$ and find a such that

$$a \equiv x^3 \pmod{y+x^6}$$

 $a \equiv x^2 \pmod{y+x}$
 $a \equiv x^4 \pmod{y+x^5}$

Here, we use the same notation we have used before with the Chinese remainder theorem:

$$m_1 = y + x^6$$
 $m_2 = y + x$ $m_3 = y + x^5$
 $a_1 = x^3$ $a_2 = x^2$ $a_3 = x^4$.

First, we solve for e_1 . We start by computing

$$f_1 = m_2 m_3 = (y+x)(y+x^5) = y^2 + x^6 y + x^6.$$

Now that we have f_1 , we can compute

$$\overline{f_1} = f_1 \pmod{m_1} = x^6.$$

From here, we can easily see that

$$\overline{f_1}^{-1} = x,$$

so we can compute e_1 :

$$e_1 = f_1 \overline{f_1}^{-1} = xy^2 + y + 1.$$

Computing e_2 requires the same steps:

as does e_3 :

$$f_3 = m_1 m_2 = (y + x^6)(y + x) = y^2 + x^5 y + 1$$

$$\overline{f_3} = f_3 \pmod{m_3} = 1$$

$$\overline{f_3}^{-1} = 1$$

$$e_3 = f_3 \overline{f_3}^{-1} = y^2 + x^5 y + 1.$$

Now, finding a is simply a matter of plugging values into the equation

$$\begin{array}{rcl} a & = & a_1e_1 + a_2e_2 + a_3e_3 \\ & = & x^4y^2 + x^3y + x^3 + x^5y^2 + x^6y + x^2 + x^4y^2 + x^2y + x^4 \\ & = & x^5y^2 + xy + 1. \end{array}$$

Theorem 3.4. (6.6.3. from text) \mathbb{F}_q^* is a cyclic group of order q-1 (where $q=p^n$ for some prime p).

Proof. Let e be the smallest integer such that $x^e = 1$ for all $x \in \mathbb{F}_q^*$. Alternately,

$$e = \lim_{x \in \mathbb{F}_q^*} \operatorname{ord}(x).$$

Invoking some group theory, we know that $e \mid q-1$, since \mathbb{F}_q^* must contain an element of order e. Also, x^e-1 has q-1 roots in \mathbb{F}_q^* , so $e \geq q-1$. Hence e=q-1.

Therefore, \mathbb{F}_q^* contains an element of order q-1 and must be cyclic of order q-1.

4 Galois Theory

Definition 4.1. A polynomial $f \in \mathbb{F}_{p^n}[x]$ of degree n that is irreducible over \mathbb{F}_p is primitive if a root x of f generates the cyclic group $\mathbb{F}_{p^n}^*$. Such a root is called a primitive element of \mathbb{F}_{p^n} .

Theorem 4.2. The number of primitive polynomials of degree n over \mathbb{F}_p is $\phi(p^n-1)/n$ and the number of primitive elements of \mathbb{F}_{p^n} is $\phi(p^n-1)$.

Proof. $\mathbb{F}_{p^n}^*$ is a cyclic group of order p^n-1 . Hence it has $\phi(p^n-1)$ generators or primitive elements. Each primitive element has a minimal polynomial of degree n that is primitive. All the roots of that polynomial are primitive¹. Hence, the number of primitive polynomials is $\phi(p^n-1)/n$.

5 Next Time

Next time, we will begin to study chapter 7. We should cover sections 7.1 through 7.4.

¹This statement needs to be proved by using the properties of the Galois group of \mathbb{F}_{p^n} over \mathbb{F}_p .