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Abstract

This section covers the Euclidean algorithm and continued fractions in a field of Laurent series.
The structure for K[z]/(f) is also discussed.

1 Euclidean Algorithm

Definition 1.1. For a polynomial f, define

1 if f=0;
dgf_{ 1+degf if f+#0.

Theorem 1.2. (6.2.4. from text) Given nonzero polynomials u,v € K[z], the extended Fuclidean

algorithm returns a and b such that au + bv = ged(u, v), using O((dgu)(dgv)) bit operations in K.
Moreover, if degu > degv > 0, then we have dega < degv and degb < degu.

2 Continued Fractions

Theorem 2.1. (6.5.1. from text) An element f € K((1/x)) is rational if and only if its continued

fraction expansion is finite.

Example 2.2. Let

3 4y +1
32 2o

fly) =

From the previous class, we know the extended Euclidean algorithm gives us

ay = Y
ap = z°+1
as = xy+x3.
So,
1
fly) = ao+ T = zy+
14+ — S+1
a +a2 z° + +$y+x3

Theorem 2.3. (6.3.2. from text) Let f(z) =} ;5q ciz ™" be an element of K((1/z)). Then f is
rational if and only if the sequence cy, c1, co, . . . satisfies a linear recurrence relation.
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Proof. First suppose f = u/v. Write
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S
Zujacj where ug # 0

u =
§=0
t
v o= kaazk where v # 0.
k=0
For simplicity, assume u; = 0 when j is outside the range 0,...,s and vy = 0 if k is outside the

range O, ..., 1.

From the definition of f, we know that ¢ > s. Now,

_ o
u = E ujx
Jj=0
oo t
= E E civpxtT!
i=0 k=0
t t
= E E Ck—rUk
r=—oo \k=r
So, for r > 0, we have,
r o=t ut = Covt,
r o= t—1, w1 = cv+ o,
r = 0, UQ = coUg + c1v1 + - - -+ vy,

For r < 0 we have,

Ut )
socy = —
Ut
0 ¢ Ut—1 — CoVt—1
1T = %
(7 ( )
_Ug —CoUp - — Ct—1Ut—1
SO ¢ = .
t y,

The second equality holds because vy = 0 if k is outside the range 0, ...,t. Then we get,

t—1
ViCt—y = — E Ck—rUk
k=0

or

V¢ =
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Making the substitution ¢ =t — r in the first equation, we get

t—1
Uk

Ci = g <—) Citk—t-
Ut

k=0

Making the substitution j =1¢ + k — t, we now get

i—1
_ Vj—itt
c; = g T Cj,
t

so we have

()

t—1
vy = Z — V-

Ct—
k=0 t—r

Now we can see that if f(z) is rational, () and (xx) give the base case and the linear recurrence
relation, respectively. On the other hand, if (%) and (x*) hold for f(z), we can find a pair of
polynomials u and v from (x) and (x*) such that f(z) = %, i.e., f(z) is rational. O

The following example is an application of Theorem 2.3, used in pseudorandom sequence generation.
Example 2.4. Let K=Fy,u=1andv=2x23+2+1. Let t =3 and s = 0.
e From (%) we get ¢cg =0, ¢c; =0, co =0, and c3 = 1.

e From (xx) we get the recurrence relation, for i > 3,
c; = Z 1 — 1(—’0]'7@43)6]'

j=i—3
= V0Ci—3 + V1C;—2 + V2C;q

Ci—2 + Ci—3.

From this relation, we can generate the pseudorandom sequence,

0,0,0,1,0,1,1,1,0,0,1,...

3 The Structure of K[z]/(f)

Theorem 3.1 (CRT version 2). (6.6.1. from text) Let fi, fo, ..., fr be polynomials of positive
degree in K|z| that are pairwise relatively prime, and let f denote there product. Then

Klz]/(f) = K[z]/(f1) @ Klz]/(f2) @ - - - @ K] /(fr)-



4 Class 16—June 9, 1998 Scribe Notes for Algorithmic Number Theory

Theorem 3.2 (CRT version 1). Let f and fi, fa,..., fr be as in the previous theorem. Then
there exists a solution a € K[x] to the system of congruences

a = a1 (mod fi)

a = az (mod fo)

a = a, (mod f.).

Moreover, a is unique modulo f and a can be computed in O((lg f)?) bit operations, assuming
dega; < deg f;.

Example 3.3. Let K = Fg and find a such that

a = o° (mod y + z°)
a = z? (mod y + x)
a = 2t (mod y + z°).

S

Here, we use the same notation we have used before with the Chinese remainder theorem:

mp; = y+x6 mo = Y-+<x mg = y+a:5

a; = .’173 ay = 1’2 az = $4.

First, we solve for e;. We start by computing
fi=mamz = (y+z)(y +2°) = y* + 2% + 2°.
Now that we have f1, we can compute
fi=f1i (modm)=ab.

From here, we can easily see that

SO we can compute ej:
-—1
er=hHfH =z +y+1

Computing es requires the same steps:

fo = mamz=(y+2°)(y+2°) =y’ +ay+a
fo = fo (modmy) =2t
=4
er = ffe =2’ +aly+1,
as does e3:
fa = mmy=(y+2°)(y+z)=y>+2°y+1
fz = f3 (modmz)=1
=1

—1
es = fafs =y’ +a"y+1
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Now, finding a is simply a matter of plugging values into the equation

a = aje; + azex + ages
zty? + 23y + 23 + 25y + 26y + 22 + 2ty? + 22y + 22
= 2%y fay+ 1.

Theorem 3.4. (6.6.5. from text) 3 is a cyclic group of order g —1 (where ¢ = p™ for some prime

D)

Proof. Let e be the smallest integer such that z° =1 for all z € F. Alternately,

e = lem ord(z).
z€Fy

Invoking some group theory, we know that e | ¢ — 1, since [F; must contain an element of order e.
Also, z° — 1 has ¢ — 1 roots in Fy, so e > ¢ — 1. Hence e =¢q — 1.
Therefore, F; contains an element of order ¢ — 1 and must be cyclic of order ¢ — 1. O

4 Galois Theory

Definition 4.1. A polynomial f € Fpy»[z] of degree n that is irreducible over F), is primitive if a
root x of f generates the cyclic group .. Such a root is called a primitive element of Fpn.

Theorem 4.2. The number of primitive polynomials of degree n over Fp, is ¢(p™ — 1)/n and the
number of primitive elements of Fpn is ¢(p™ — 1).

Proof. Fpn is a cyclic group of order p™ —1. Hence it has ¢(p™ —1) generators or primitive elements.
Each primitive element has a minimal polynomial of degree n that is primitive. All the roots of
that polynomial are primitive'. Hence, the number of primitive polynomials is ¢(p™ — 1) /n. O

5 Next Time

Next time, we will begin to study chapter 7. We should cover sections 7.1 through 7.4.

!This statement needs to be proved by using the properties of the Galois group of Fpn over [Fp.



