Scribe Notes for Algorithmic Number Theory Class 13—June 4, 1998

Scribes: Cara Struble and Craig Struble

Abstract

Today we finish Chapter 5, covering Sections 5.6 on the multiplicative structure of $\mathbb{Z}/(n)^*$, 5.7 on quadratic residues, and 5.8 on the Legendre symbol.

1 The Multiplicative Structure of $(\mathbb{Z}/(n))^*$

Let $n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$ be the prime factors of n. Since $\mathbb{Z}/(n) \cong \mathbb{Z}/(p_1^{e_1}) \oplus \mathbb{Z}/(p_2^{e_2}) \oplus \cdots \oplus \mathbb{Z}/(p_k^{e_k})$ as rings, we have this isomorphism of the multiplicative group:

$$(\mathbb{Z}/(n))^* \cong (\mathbb{Z}/(p_1^{e_1}))^* \times (\mathbb{Z}/(p_2^{e_2}))^* \times \cdots \times (\mathbb{Z}/(p_k^{e_k}))^*.$$

Example 1.1. $n = 60 = 2^2 \cdot 3 \cdot 5$, $\phi(60) = 16$, $\phi(4) = 2$, $\phi(3) = 2$, $\phi(5) = 4$

$(\mathbb{Z}/(60))^*$	\cong $(\mathbb{Z}/(4))^*$	\times $(\mathbb{Z}/(3))^*$	$\times (\mathbb{Z}/(5))^*$
1	$\overline{1}$	$\overline{1}$	1
$\overline{7}$			$\overline{2}$
11	$\overline{3}$	$ \frac{\overline{1}}{2} $ $ \frac{\overline{1}}{2} $ $ \frac{\overline{2}}{2} $ $ \overline{1} $ $ \frac{\overline{2}}{2} $ $ \overline{1} $ $ \overline{2} $ $ \overline{1} $	$\overline{1}$
$\overline{13}$	$\overline{1}$	$\overline{1}$	
$\overline{17}$	$\overline{1}$	$\overline{2}$	$\overline{2}$
$ \begin{array}{r} \overline{19} \\ \overline{23} \\ \overline{29} \end{array} $	$\overline{3}$	$\overline{1}$	$\overline{4}$
$\overline{23}$	$\overline{3}$	$\overline{2}$	$\overline{3}$
$\overline{29}$	$\overline{1}$	$\overline{2}$	$\overline{4}$
$\overline{31}$	$\overline{3}$	$\overline{1}$	$\overline{1}$
$\overline{37}$	$\overline{1}$	$\overline{1}$	$\overline{2}$
$\overline{41}$	<u>1</u>	$\overline{2}$	$\overline{1}$
$\frac{\overline{41}}{43}$	$\overline{3}$	$\overline{1}$	$\frac{\overline{3}}{2}$
$\overline{47}$	$\overline{3}$	$\overline{2}$	
$\overline{49}$	$\overline{1}$	$\overline{1}$	$\overline{4}$
$\overline{53}$	$\overline{1}$	$\frac{\overline{1}}{2}$	$\frac{\overline{4}}{\overline{3}}$
$\overline{59}$	$\overline{3}$	$\overline{2}$	$\overline{4}$

Hence, it suffices to consider $G = (\mathbb{Z}/(p^e))^*$ where p is prime and $e \geq 1$. G has $\phi(p^e) = p^{e-1}(p-1)$ elements.

If e = 1, then G is a cyclic group.

If $p \geq 3$, then G is a cyclic group.

If p=2 and e=2, then G is cyclic and generated by $\overline{3}$.

If p=2 and $e\geq 3$, then $G\cong C_2\times C_{2^{e-2}}$, where C_2 is a cyclic group of order 2 and $C_{2^{e-2}}$ is a cyclic group of order 2^{e-2} .

Example 1.2. This is an example of the last case above. Consider $(\mathbb{Z}/(8))^*$. Here p=2 and e=3. We have

$(\mathbb{Z}/(8))^*$	\cong	$(\mathbb{Z}/(2))^*$	X	$(\mathbb{Z}/(2))^*$
1		1		1
$\overline{3}$		$\overline{3}$		$\overline{1}$
5		1		$\overline{5}$
$\overline{7}$		$\overline{3}$		$\overline{5}$

 $\overline{3}, \overline{5}, \overline{7}$ are all of order 2. We get 3 subgroups of order 2: $\{\overline{1}, \overline{3}\}, \{\overline{1}, \overline{5}\}, \text{ and } \{\overline{1}, \overline{7}\}$. The direct product of any two of these gives $(\mathbb{Z}/(8))^*$.

Now we present a proof of the first case above: If e=1 then G is a cyclic group. This is exercises 14 through 18 in Chapter 5.

Proof. View $\mathbb{Z}/(p)$ as a field. Any polynomial of degree d over $\mathbb{Z}/(p)$ has at most d roots. The polynomial $X^{p-1}-1$ over $\mathbb{Z}/(p)$ has exactly p-1 roots by Fermat's Theorem. If d|(p-1) then $(X^d-1)|(X^{p-1}-1)$ because

$$X^{p-1} - 1 = (X^d - 1) \sum_{i=0}^{\frac{p-1}{d} - 1} X^{di}.$$

Hence $X^d - 1$ has exactly d roots in $\mathbb{Z}/(p)$. If $q^e|(p-1)$ where q is prime and $e \geq 1$, then we show by induction that $(\mathbb{Z}/(p))^*$ contains an element of order q^e .

 $X^q - 1$ has q roots, all but 1 have order q.

 $X^{q^2} - 1$ has q^2 roots, $q^2 - q$ have order q^2 .

:

 $X^{q^e} - 1$ has q^e roots, $q^e - q^{e-1}$ have order q^e .

Let $p-1=q_1^{e_1}q_2^{e_2}\dots q_k^{e_k}$ be the prime factorization of p-1. Choose for each $i, 1 \leq i \leq k$, an element $q_i \in (\mathbb{Z}/(p))^*$ of order $q_i^{e_i}$. Then $g_1g_2\dots g_k$ has order p-1 in $(\mathbb{Z}/(p))^*$. So $(\mathbb{Z}/(p))^*$ is cyclic and has $\phi(p-1)$ generators.

2 Quadratic Residues

Definition 5.7.1 in the text defines an m^{th} power reside (mod n). Suppose $m, n \in \mathbb{Z}^+$ and $a \in \mathbb{Z}$ with gcd(a,n) = 1. Then a is an m^{th} power residue (mod n) if there is an x such that $x^m \equiv a \pmod{n}$. Alternatively, \overline{a} has an m^{th} root in $(\mathbb{Z}/(n))^*$.

Special case: Suppose p is prime and gcd(m,p-1)=1. Look at the m^{th} power map

$$f: (\mathbb{Z}/(p))^* \to (\mathbb{Z}/(p))^*$$

defined by $f(\overline{c}) = \overline{c}^m$. This is a permutation of $(\mathbb{Z}/(p))^*$ since $(\mathbb{Z}/(p))^*$ is a cyclic group of order relatively prime to m. Every element of $(\mathbb{Z}/(p))^*$ has a unique m^{th} root.

Example 2.1. $p = 7, p - 1 = 2 \cdot 3, m = 5$ The following table shows the application of the fifth power map to \overline{c} .

$$\begin{array}{c|cccc} \overline{c} & \overline{c}^5 \\ \hline \overline{1} & \overline{1} \\ \overline{2} & \overline{4} \\ \overline{3} & \overline{5} \\ \overline{4} & \overline{2} \\ \overline{5} & \overline{3} \\ \overline{6} & \overline{6} \\ \end{array}$$

Theorem 2.2 (Theorem 5.7.2). Suppose $(\mathbb{Z}/(n))^*$ is cyclic and gcd(a, n) = 1. Then, a is an m^{th} power residue modulo n if and only if

$$a^{\varphi(n)/d} \equiv 1 \pmod{n},$$

where $d = \gcd(m, \varphi(n))$.

Proof. Write m = dk. If a has a d^{th} root modulo n, called b, then $b^d \equiv a \pmod{n}$ and $b^{\varphi(n)} \equiv 1 \pmod{n}$ by the Euler-Fermat theorem. So $a^{\varphi(n)/d} \equiv 1 \pmod{n}$.

Conversely, if $a^{\varphi(n)/d} \equiv 1 \pmod{n}$, then a has a d^{th} root modulo n. This is because $(\mathbb{Z}/(n))^*$ is cyclic with order $\phi(n)$. Take a generator γ for $(\mathbb{Z}/(n))^*$, which must have order $\phi(n)$. Then $a = \gamma^z$ where z is divisible by d. Then $\gamma^{z/d}$ is a d^{th} root of a.

We have $\gcd(k,\varphi(n))=1$. The map $\alpha\to\alpha^k$ is a permutation. Hence a has an m^{th} root modulo n.

Suppose gcd(a, n) = 1. Then a is a quadratic residue \pmod{n} if a is a second power residue \pmod{n} , and otherwise a is a quadratic nonresidue.

Corollary 2.3 (Corollary 5.7.3: Euler's Criterion). Let p be an odd prime and a be such that gcd(a, p) = 1. Then, a is a quadratic residue modulo p if

$$a^{\frac{p-1}{2}} \equiv 1 \pmod{p},$$

and is a quadratic nonresidue \pmod{p} if

$$a^{\frac{p-1}{2}} \equiv -1 \pmod{p}.$$

Corollary 2.4 (Corollary 5.7.4). There are (p-1)/2 quadratic residues and (p-1)/2 quadratic nonresidues modulo an odd prime p.

Example 2.5. Let p = 11. The following table shows the squares modulo 11.

a	a^2	$\pmod{11}$
1		1
2		4
2 3 4		$\frac{4}{9}$
4		5
5 6 7 8 9		3
6		3
7		5
8		9
9		4
10		1

We see that the quadratic residues $\pmod{11}$ are $\{\overline{1}, \overline{3}, \overline{4}, \overline{5}, \overline{9}\}$ and the quadratic nonresidues modulo 11 are $\{\overline{2}, \overline{6}, \overline{7}, \overline{8}, \overline{10}\}$.

Corollary 2.6 (Corollary 5.7.5). We can find a quadratic nonresidue \pmod{p} with a Las Vegas algorithm with expected $O((\lg p)^2)$ bit operations.

3 Legendre Symbol

Let $a \in \mathbb{Z}$ and p be an odd prime. The **Legendre symbol** is notation useful for summations and other functions counting quadratic residues, and is defined by

$$\left(\frac{a}{p} \right) = \begin{cases} 1, & \text{if } a \text{ is a quadratic residue;} \\ -1, & \text{if } a \text{ is a quadratic nonresidue;} \\ 0, & \text{if } p \mid a. \end{cases}$$

The following theorem provides ways of computing the Legendre symbol

Theorem 3.1 (Theorem 5.8.1). Let p and q be odd primes. Then

1.
$$\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \pmod{p};$$
 (Euler's Criterion)
 $\left(\frac{-1}{p}\right) = \begin{cases} 1 & \text{if } p \equiv 1 \pmod{4} \\ -1 & \text{if } p \equiv 3 \pmod{4}; \end{cases}$

$$2. \left(\frac{a}{p}\right) \left(\frac{b}{p}\right) = \left(\frac{ab}{p}\right);$$

3.
$$\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right) \text{ if } a \equiv b \pmod{p};$$

4.
$$\left(\frac{a^2}{p}\right) = \begin{cases} 1 & \text{if } p \not\mid a; \\ 0 & \text{if } p \mid a; \end{cases}$$

5.
$$\left(\frac{2}{p}\right) = (-1)^{(p^2-1)/8};$$

6. If
$$p \neq q$$
, then $\left(\frac{p}{q}\right) \left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$.

Example 3.2. Using Theorem 5.8.1, we compute the Legendre symbol $\left(\frac{105}{11}\right)$.

$$\begin{pmatrix}
\frac{105}{11}
\end{pmatrix} = \begin{pmatrix}
\frac{6}{11}
\end{pmatrix} = \begin{pmatrix}
\frac{2}{11}
\end{pmatrix} \begin{pmatrix}
\frac{3}{11}
\end{pmatrix} (Rules 3, 2)$$

$$= \begin{pmatrix}
-\frac{8}{11}
\end{pmatrix} (-1)^{(11^2-1)/8} (Rules 3, 5)$$

$$= \begin{pmatrix}
-\frac{1}{11}
\end{pmatrix} \begin{pmatrix}
\frac{2}{11}
\end{pmatrix} \begin{pmatrix}
\frac{4}{11}
\end{pmatrix} (-1) (Rule 2)$$

$$= (-1)(-1)(1)(-1) = -1. (Rules 1, 2, 4)$$

Example 3.3. Using Theorem 5.8.1, we compute the Legendre symbol $\left(\frac{11}{13}\right)$.

$$\begin{pmatrix}
\frac{11}{13}
\end{pmatrix} = \begin{pmatrix}
\frac{13}{11}
\end{pmatrix} (-1)^{\frac{13-1}{2}\frac{11-1}{2}} & (Rule \ 6) \\
= \begin{pmatrix}
\frac{2}{11}
\end{pmatrix} = -1. & (Rules \ 3, \ 5)$$

Example 3.4. Using Theorem 5.8.1, we compute the Legendre symbol $\left(\frac{11}{19}\right)$.

$$\begin{pmatrix}
\frac{11}{19}
\end{pmatrix} = \begin{pmatrix}
\frac{19}{11}
\end{pmatrix} (-1)^{\frac{19-1}{2}\frac{11-1}{2}} \qquad (Rule \ 6)$$

$$= \begin{pmatrix}
\frac{6}{11}
\end{pmatrix} (-1) = (-1)(-1) = 1. \quad (Rule \ 3)$$

$$7^2 = 49 \equiv 11 \pmod{19}.$$