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Scribe Notes for Algorithmic Number Theory
Class 13—June 4, 1998

Scribes: Cara Struble and Craig Struble

Abstract

Today we finish Chapter 5, covering Sections 5.6 on the multiplicative structure of Z/(n)*, 5.7 on
quadratic residues, and 5.8 on the Legendre symbol.

1 The Multiplicative Structure of (Z/(n))*

Let n = p{'p§? - - - pi* be the prime factors of n. Since Z/(n) = Z/(pT') ® Z/(p5?) & - - - ® Z/ (pi¥)
as rings, we have this isomorphism of the multiplicative group:

(Z/ ()" = (Z/(p1"))" % (Z/(F))* x - - x (Z/(p*))"
Example 1.1. n =60 =22-3-5, ¢(60) = 16, ¢(4) =2, #(3) =2, ¢(5) =4
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Hence, it suffices to consider G = (Z/(p°))* where p is prime and e > 1. G has ¢(p°) =
p°~1(p — 1) elements.
If e =1, then G is a cyclic group.
If p > 3, then G is a cyclic group.
If p=2 and e = 2, then G is cyclic and generated by 3.
If p=2ande > 3, then G = Cy x Cye—2, where C5 is a cyclic group of order 2 and Cye—2 is a cyclic
group of order 2672,
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Example 1.2. This is an example of the last case above. Consider (Z/(8))*. Here p = 2 and
e = 3. We have

(Z/@®8)) = (Z/(2)" x (Z/(2)"
1 1 1
3 3 1
5 1 5
7 3 5

3,5, 7 are all of order 2. We get 3 subgroups of order 2: {1, 3}, {1,5},and{1, 7}. The direct product
of any two of these gives (Z/(8))*.

Now we present a proof of the first case above: If e = 1 then G is a cyclic group. This is
exercises 14 through 18 in Chapter 5.

Proof. View Z/(p) as a field. Any polynomial of degree d over Z/(p) has at most d roots. The
polynomial XP~1 — 1 over Z/(p) has exactly p — 1 roots by Fermat’s Theorem. If d|(p — 1) then
(X4 —1)|(XP~! — 1) because

p=1_
v 1

xrto1=(x4-1) Y x%
=0

Hence X¢ — 1 has exactly d roots in Z/(p). If ¢°|(p — 1) where q is prime and e > 1, then we show
by induction that (Z/(p))* contains an element of order ¢°.

X2 — 1 has g roots, all but 1 have order gq.

X7 — 1 has ¢? roots, ¢> — ¢ have order ¢°.

X% — 1 has ¢° roots, ¢¢ — ¢°~! have order ¢°.
Let p — 1 = ¢7*¢5? ... q;* be the prime factorization of p — 1. Choose for each i, 1 < i < k,
an element ¢; € (Z/(p))* of order ¢;'. Then g1g2...gx has order p — 1 in (Z/(p))*. So (Z/(p))* is

cyclic and has ¢(p — 1) generators. O

2 Quadratic Residues

Definition 5.7.1 in the text defines an m** power reside (mod n). Suppose m,n € Z* and a € Z
with ged(a,n) = 1. Then a is an m® power residue (mod n) if there is an z such that 2™ = a
(mod n). Alternatively, @ has an m*" root in (Z/(n))*.

Special case: Suppose p is prime and ged(m,p — 1) = 1. Look at the m!* power map

f(Z/(p)*" — (Z/(p)*

defined by f(¢) = ¢™. This is a permutation of (Z/(p))* since (Z/(p))* is a cyclic group of order
relatively prime to m. Every element of (Z/(p))* has a unique m*”* root.
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Example 2.1. p=7,p—1 = 2-3,m = 5 The following table shows the application of the fifth
power map to c.
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Theorem 2.2 (Theorem 5.7.2). Suppose (Z/(n))* is cyclic and ged(a,n) = 1. Then, a is an
m' power residue modulo n if and only if

a?™/d = 1 (mod n),
where d = ged(m, p(n)).

Proof. Write m = dk. If a has a d'* root modulo n, called b, then b* = ¢ (mod n) and b¥(") =1
(mod n) by the Euler-Fermat theorem. So a¥(™/¢ =1 (mod n).

Conversely, if a?™/¢ =1 (mod n), then a has a d*™® root modulo n. This is because (Z/(n))*
is cyclic with order ¢(n). Take a generator v for (Z/(n))*, which must have order ¢(n). Then

a = v where z is divisible by d. Then %/¢ is a d*" root of a.

k th

We have ged(k, ¢(n)) = 1. The map a — o is a permutation. Hence a has an m'" root modulo
n. O

Suppose ged(a,n) = 1. Then a is a quadratic residue (mod n) if a is a second power
residue  (mod n), and otherwise a is a quadratic nonresidue.

Corollary 2.3 (Corollary 5.7.3: Euler’s Criterion). Letp be an odd prime and a be such that
ged(a,p) = 1. Then, a is a quadratic residue modulo p if

p—1

a2z = 1 (modp),
and is a quadratic nonresidue  (mod p) if
p—1

az = -1 (modp).

Corollary 2.4 (Corollary 5.7.4). There are (p—1)/2 quadratic residues and (p—1)/2 quadratic
nonresidues modulo an odd prime p.

Example 2.5. Let p = 11. The following table shows the squares modulo 11.
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a | a® (mod 11)
1 1
2 4
3 9
4 )
) 3
6 3
7 5
8 9
9 4
10 1

We see that the quadratic residues (mod 11) are {1,3,4,5,9} and the quadratic nonresidues

Corollary 2.6 (Corollary 5.7.5). We can find a quadratic nonresidue  (mod p) with a Las
Vegas algorithm with expected O((Igp)?) bit operations.

3 Legendre Symbol

Let a € Z and p be an odd prime. The Legendre symbol is notation useful for summations and
other functions counting quadratic residues, and is defined by

a 1, if a is a quadratic residue;
(—) = -1, if a is a quadratic nonresidue;
P 0, if p|a.

The following theorem provides ways of computing the Legendre symbol

Theorem 3.1 (Theorem 5.8.1). Let p and q be odd primes. Then

1. (2) =aP~1/2  (mod p); (Euler’s Criterion)

—1\ 1 ifp=1 (mod 4)
(?)_{ -1 ifp=3 (mod 4);



Scribe Notes for Algorithmic Number Theory Class 13—June 4, 1998

6. If p# q, then (g) (%) = (—1)1%1%

Example 3.2. Using Theorem 5.8.1, we compute the Legendre symbol (ﬁ)

11
() - (5)-G)E) s
_ (—_)(_1><1121>/8 (Rules 3, 5)
(

— 2 4
0 (ﬁ) (ﬁ) (=1)  (Rule 2)
= (-1)(-1)(1)(-1)=—1. (Rules 1, 2, 4)

Example 3.3. Using Theorem 5.8.1, we compute the Legendre symbol (E)

13
11 13 13—111—1
(ﬁ) = (ﬁ) (=1)"2 "z (Rule 6)

2
= (ﬁ) =—1. (Rules 3, 5)
. 11
Example 3.4. Using Theorem 5.8.1, we compute the Legendre symbol (E)
11 19 19-111-1
(E) = (ﬁ) (-1)7z 7= (Rule 6)

_ (%)(_1):(—1)(—1):1. (Rule 3)
77=49 = 11 (mod 19).



