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Abstract

In this class, we discuss the extended Chinese remainder theorem and prove the NP-completeness
of the anti-Chinese remainder theorem (ACRT).

1 Extended Chinese remainder theorem

Consider the system of congruences,

T = 1 (mod m;)
T = T (mod my)
x = xp (mod my,)

Theorem 1.1 (Extended Chinese remainder theorem). The system of congruences S has a
solution if and only if v; = x; (mod ged(my, m;)) for all 1 <i,j < k. Furthermore, the solution
is unique modulo lem(my, mo, - -+, myg).

Example 1.2.
z = 4 (mod 6) (1)
x = 2 (mod4) (2)
x = 7 (mod?9) (3)

Before solving these equations, we need to check whether the solution exists or not. Since 9 and 4
are relatively prime, we only have to show that ged(4,6) | (4 — 2) and ged(6,9) | (9 — 6). Clearly,
these are both true, so the conditions of the theorem are satisfied, hence there exists a solution.
To find the solution, we start with equations (1) and (2). From equation (1) we know that
there exists a ¢, such that
z =4+ 6t.

Substituting this into equation (2), we have,
44+6t=2 (mod 4),

which is equivalent to
6t =2 (mod4).

Then
3t=1 (mod 2),

S0,

t=1 (mod 2),
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i.e.,, t =14 2j for some j € Z. So, x =4+ 6 + 125 = 10 + 124, or,
z=10 (mod 12) (4)
Now look at (3) and (4). From (3) we know that
x="T7+09t
and we can plug this into (4) to get
r=T7+9/=10 (mod 12).

We can subtract 7 from both sides to get

9t =3 (mod 12)
and then we can divide both sides by 3, giving us

3t =1 (mod 4)
or, since 3 is its own inverse modulo 4,

t'=3 (mod 4).

Now we can say that ¢ = 3 + 4;' for some j', so z =7+ 9(3+45) = 7+ 27 + 365 = 34 + 36.
Hence,
x =34 (mod 36),

which satisfies the equations.

2 Anti-Chinese remainder theorem

Definition 2.1. The Anti-Chinese remainder theorem (ACRT) is a decision problem defined as
follows:

Instance:  Set S = {(x1, m1), (z2, m2), - - -, (zk, mi)} of pairs of integers.
Question: Is there an integer = such that = # x; (mod m;) for all 1 < i < k?

While implementations of the Chinese remainder theorem can be performed in polynomial time,
it turns out that the Anti-Chinese remainder theorem is NP-complete. To show this, we need a
known NP-complete problem that can be reduced to ACRT. Here, we will use the well-known
NP-complete problem, 3-Satisfiability.

Definition 2.2. A literal is a variable or its complement, e.g., y; or ;.
Definition 2.3. A clause is a set of literals.

Definition 2.4. A clause is satisfied if and only if it contains at least one true literal. !

!This implies that the logical or operation is performed on the literals in the clause.
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Definition 2.5. The 3-Satisfiability problem (3SAT) is a decision problem defined as follows:

Instance:  Set U = {y1, 42, -+, y+} of variables and a set C of clauses over U such
that each c € C has cardinality 3.

Question: Is there a satisfying truth assignment for C; that is, an assignment of
true or false to each y; such that each clause contains one or more true
literals?

Example 2.6. Let U = {y1,y2,y3,y4} and let C = {{y1, %2, ya}, {U1, y3, ya}, {12, U3, Va} }-
The equivalent boolean expression to C' is

(VR VY) ATV ysVys) A(y2 VT3V Yz).

One of the several truth assignments that satisfies C is

1 — true
Yo — true
y3 — false
ys — false.

Theorem 2.7. ACRT is NP-complete.

Proof. First, we must show that ACRT € NP. Then, we must show that for every L € NP,
L <b, ACRT.

e A nondeterministic algorithm for ACRT is given as follows:

— First, pick an x

— Then, check whether  # x; (mod m;) for 1 <i < k and accept if so.

Since we can restrict our guess to 0 < x < lem(mims - - -mg), 1g(x) can be bounded by 1g(.9),
where S is the input size. This is to say, we can do the check in polynomial time. Hence,

ACRT € NP.

e Instead of showing that for every L € NP, L <}, ACRT, it will suffice to show that 3SAT <%,
ACRT.

Let U ={y1,y2,---,y:} and F = {c1, ¢, -+, ¢y} be an instance of 3SAT, where
ci = {2, %, 2 b
and
2oy € (Yai> it 2, € {Wbis Tt 28, € {Yeir b

Let p1, pa, - - -, pt be the first ¢ primes. Since p; = O(tlogt), we can generate this list of primes
in polynomial time. Define

P =

, 0 ifzfli = Ya;
1 if 2l =Ya,
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) 0 if zii =Y,
1 if 2 =7,

0 if 2, =y
¢ = :
! 1 if2p, =Y,

Example 2.8. Below are the values of these variables for the set of clauses in Example 2.6.

For 1 < i < n, we can use the Chinese Remainder theorem to find an z; with 0 < z; <
Da;Pb; Pe;» satisfying

r; = a, (mod p,,)
T = b; (mOd Dy, )
r; = ¢ (mod p,)

Example 2.9. Now, for Example 2.6, using Example 2.8, we can get the congruences

7y = 0 (mod 2)
z1 = 1 (mod 3)
z1; = 0 (mod7),

and hence, 1 can be uniquely determined modulo 42.

We can now define S the following system of incongruences:

x # 2 (mod 3)

x # 2,3,4 (mod 5)
X O(t3) incongruences

m{ ©
€z 7_é 2a3>"'7pt_1 (mOdpt)

€T 7_é 1 (mOd palpblpcl)

T # T2 (mod pa,PbyDey)
(2) X e O(n) incongruences

T # zy (mod pa,,Pb,Pen)

Now we can prove that F' is satisfiable if and only if this system of incongruences ((1) and
(2)) has a solution. (1) is needed to ensure that x = 0,1 (mod p;) for all 1 < i < ¢. Now
let there be an assignment

(yl;y27 o 'ayn) = (ylayQa o 7yn)
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Then clause ¢; is satisfied if and only if

(yaia ybia yci) 7& (aia bia Ci)a
which by our construction means x # x; (mod p,,p,pe;)- Hence 3SAT <l, ACRT.

We conclude that ACRT is NP-complete.

3 Next Time

Next time we will finish up Chapter 5.



