Scribe Notes for Algorithmic Number Theory Class 12—June 3, 1998

Scribes: Jeremy Rotter, Yizhong Wang, and Wen Wang

Abstract

In this class, we discuss the extended Chinese remainder theorem and prove the NP-completeness of the anti-Chinese remainder theorem (ACRT).

1 Extended Chinese remainder theorem

Consider the system of congruences,

$$\left. \begin{array}{cccc}
 x & \equiv & x_1 & \pmod{m_1} \\
 x & \equiv & x_2 & \pmod{m_2} \\
 \vdots & & & \\
 x & \equiv & x_k & \pmod{m_k}
 \end{array} \right\} S$$

Theorem 1.1 (Extended Chinese remainder theorem). The system of congruences S has a solution if and only if $x_i \equiv x_j \pmod{\gcd(m_i, m_j)}$ for all $1 \leq i, j \leq k$. Furthermore, the solution is unique modulo $\operatorname{lcm}(m_1, m_2, \dots, m_k)$.

Example 1.2.

$$\begin{cases} x \equiv 4 \pmod{6} & (1) \\ x \equiv 2 \pmod{4} & (2) \\ x \equiv 7 \pmod{9} & (3) \end{cases}$$

Before solving these equations, we need to check whether the solution exists or not. Since 9 and 4 are relatively prime, we only have to show that $gcd(4,6) \mid (4-2)$ and $gcd(6,9) \mid (9-6)$. Clearly, these are both true, so the conditions of the theorem are satisfied, hence there exists a solution.

To find the solution, we start with equations (1) and (2). From equation (1) we know that there exists a t, such that

$$x = 4 + 6t$$
.

Substituting this into equation (2), we have,

$$4 + 6t \equiv 2 \pmod{4}$$
,

which is equivalent to

$$6t \equiv 2 \pmod{4}$$
.

Then

$$3t \equiv 1 \pmod{2}$$
,

so,

$$t \equiv 1 \pmod{2}$$
,

i.e., t = 1 + 2j for some $j \in \mathbb{Z}$. So, x = 4 + 6 + 12j = 10 + 12j, or,

$$x \equiv 10 \pmod{12} \tag{4}$$

Now look at (3) and (4). From (3) we know that

$$x = 7 + 9t'$$

and we can plug this into (4) to get

$$x = 7 + 9t' \equiv 10 \pmod{12}$$
.

We can subtract 7 from both sides to get

$$9t' \equiv 3 \pmod{12}$$

and then we can divide both sides by 3, giving us

$$3t' \equiv 1 \pmod{4}$$

or, since 3 is its own inverse modulo 4,

$$t' \equiv 3 \pmod{4}$$
.

Now we can say that t' = 3 + 4j' for some j', so x = 7 + 9(3 + 4j) = 7 + 27 + 36j = 34 + 36j. Hence,

$$x \equiv 34 \pmod{36}$$
,

which satisfies the equations.

2 Anti-Chinese remainder theorem

Definition 2.1. The Anti-Chinese remainder theorem (ACRT) is a decision problem defined as follows:

Instance: Set $S = \{(x_1, m_1), (x_2, m_2), \dots, (x_k, m_k)\}$ of pairs of integers.

Question: Is there an integer x such that $x \not\equiv x_i \pmod{m_i}$ for all $1 \le i \le k$?

While implementations of the Chinese remainder theorem can be performed in polynomial time, it turns out that the Anti-Chinese remainder theorem is NP-complete. To show this, we need a known NP-complete problem that can be reduced to ACRT. Here, we will use the well-known NP-complete problem, 3-Satisfiability.

Definition 2.2. A literal is a variable or its complement, e.g., y_i or $\overline{y_i}$.

Definition 2.3. A *clause* is a set of literals.

Definition 2.4. A clause is *satisfied* if and only if it contains at least one true literal. ¹

 $^{{}^{1}}$ This implies that the logical or operation is performed on the literals in the clause.

Definition 2.5. The 3-Satisfiability problem (3SAT) is a decision problem defined as follows:

Instance: Set $U = \{y_1, y_2, \dots, y_t\}$ of variables and a set C of clauses over U such

that each $c \in C$ has cardinality 3.

Question: Is there a satisfying truth assignment for C; that is, an assignment of

true or false to each y_i such that each clause contains one or more true

literals?

Example 2.6. Let $U = \{y_1, y_2, y_3, y_4\}$ and let $C = \{\{y_1, \overline{y_2}, y_4\}, \{\overline{y_1}, y_3, y_4\}, \{y_2, \overline{y_3}, \overline{y_4}\}\}$. The equivalent boolean expression to C is

$$(y_1 \vee \overline{y_2} \vee y_4) \wedge (\overline{y_1} \vee y_3 \vee y_4) \wedge (y_2 \vee \overline{y_3} \vee \overline{y_4}).$$

One of the several truth assignments that satisfies C is

 $egin{array}{lll} y_1 &
ightarrow true \ y_2 &
ightarrow true \ y_3 &
ightarrow false \ y_4 &
ightarrow false. \end{array}$

Theorem 2.7. ACRT is NP-complete.

Proof. First, we must show that ACRT \in NP. Then, we must show that for every $L \in$ NP, $L \leq_m^p$ ACRT.

- A nondeterministic algorithm for ACRT is given as follows:
 - First, pick an x
 - Then, check whether $x \not\equiv x_i \pmod{m_i}$ for $1 \le i \le k$ and accept if so.

Since we can restrict our guess to $0 \le x \le \text{lcm}(m_1 m_2 \cdots m_k)$, lg(x) can be bounded by lg(S), where S is the input size. This is to say, we can do the check in polynomial time. Hence, $\text{ACRT} \in \text{NP}$.

• Instead of showing that for every $L \in NP$, $L \leq_m^p ACRT$, it will suffice to show that $3SAT \leq_m^p ACRT$

Let $U = \{y_1, y_2, \dots, y_t\}$ and $F = \{c_1, c_2, \dots, c_n\}$ be an instance of 3SAT, where

$$c_i = \{z_{a_i}^i, z_{b_i}^i, z_{c_i}^i\},$$

and

$$z_{a_i}^i \in \{y_{a_i}, \ \overline{y_{a_i}}\}, \ z_{b_i}^i \in \{y_{b_i}, \ \overline{y_{b_i}}\}, \ z_{c_i}^i \in \{y_{c_i}, \ \overline{y_{c_i}}\}.$$

Let p_1, p_2, \dots, p_t be the first t primes. Since $p_t = O(t \log t)$, we can generate this list of primes in polynomial time. Define

$$a_{i}^{'} = \begin{cases} 0 & \text{if } z_{a_{i}}^{i} = y_{a_{i}} \\ 1 & \text{if } z_{a_{i}}^{i} = \overline{y_{a_{i}}} \end{cases}$$

$$b_{i}^{'} = \begin{cases} 0 & \text{if } z_{b_{i}}^{i} = y_{b_{i}} \\ 1 & \text{if } z_{b_{i}}^{i} = \overline{y_{b_{i}}} \end{cases}$$

$$c_{i}^{'} = \begin{cases} 0 & \text{if } z_{c_{i}}^{i} = y_{c_{i}} \\ 1 & \text{if } z_{c_{i}}^{i} = \overline{y_{c_{i}}} \end{cases}$$

Example 2.8. Below are the values of these variables for the set of clauses in Example 2.6.

$$a'_1 = 0$$
 $a'_2 = 1$ $a'_3 = 0$
 $b'_1 = 1$ $b'_2 = 0$ $b'_3 = 1$
 $c'_1 = 0$ $c'_2 = 1$ $c'_3 = 1$

For $1 \leq i \leq n$, we can use the Chinese Remainder theorem to find an x_i with $0 \leq x_i \leq p_{a_i}p_{b_i}p_{c_i}$, satisfying

$$x_i \equiv a_i' \pmod{p_{a_i}}$$

 $x_i \equiv b_i' \pmod{p_{b_i}}$
 $x_i \equiv c_i' \pmod{p_{c_i}}$

Example 2.9. Now, for Example 2.6, using Example 2.8, we can get the congruences

$$x_1 \equiv 0 \pmod{2}$$

 $x_1 \equiv 1 \pmod{3}$
 $x_1 \equiv 0 \pmod{7}$

and hence, x_1 can be uniquely determined modulo 42.

We can now define S the following system of incongruences:

$$(1) \begin{cases} x \not\equiv 2 & \pmod{3} \\ x \not\equiv 2, 3, 4 & \pmod{5} \\ \vdots & & \\ x \not\equiv 2, 3, \cdots, p_t - 1 & \pmod{p_t} \end{cases}$$
 $O(t^3)$ incongruences

$$(2) \begin{cases} x \not\equiv x_1 & \pmod{p_{a_1}p_{b_1}p_{c_1}} \\ x \not\equiv x_2 & \pmod{p_{a_2}p_{b_2}p_{c_2}} \\ \vdots \\ x \not\equiv x_n & \pmod{p_{a_n}p_{b_n}p_{c_n}} \end{cases}$$
 O(n) incongruences

Now we can prove that F is satisfiable if and only if this system of incongruences ((1) and (2)) has a solution. (1) is needed to ensure that $x \equiv 0, 1 \pmod{p_i}$ for all $1 \le i \le t$. Now let there be an assignment

$$(y_1,y_2,\cdots,y_n)=(y_1^{'},y_2^{'},\cdots,y_n^{'}).$$

Then clause c_i is satisfied if and only if

$$(y_{a_{i}}^{'}, y_{b_{i}}^{'}, y_{c_{i}}^{'}) \neq (a_{i}^{'}, b_{i}^{'}, c_{i}^{'}),$$

which by our construction means $x \not\equiv x_i \pmod{p_{a_i}p_{b_i}p_{c_i}}$. Hence 3SAT $\leq_m^p ACRT$.

We conclude that ACRT is NP-complete.

3 Next Time

Next time we will finish up Chapter 5.