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Abstract

Today’s class covers methods for evaluating polynomials in a ring as well as solving systems of
linear congruences. The Chinese Remainder theorem is covered in two forms and an algorithm for
solving systems of linear congruences is presented.

1 Evaluating a Polynomial in a Ring

The task is to compute the value of
d

fla) =) cad,

§=0
where cq # 0, for some = € Z/(n).
Let a € Z/(n). There are two methods for calculating f(a). The first is the straight-forward
approach suggested by the summation above while the second makes an optimization based on
Horner’s rule.

Intuitive Polynomial Evaluation. To compute f(a), we need to execute the following steps.
1. Generate a table of all the squares of a, i.e., a, a2, .. .,agk where k = [log, d].

2. For each j with ¢; # 0, compute a’ using the entries in the previously computed table. This
will take at most lg d multiplications.

3. Sum up all the cja:j.

To analyze the complexity, we introduce the value r = |{c¢; | ¢; # 0}| to represent the sparsity
of the polynomial. In other words, r represents the number of nonzero terms in the polynomial
(which is frequently much less than d). Recall that s is the time it takes for multiplication in the
ring. Then the bit complexity of polynomial evaluation in a ring is

O(rslogd).
Evaluation Using Horner’s Rule. Horner’s rule makes use of the following observation:
Zaiazi = ag+z(ag + z(ag + z(- - -x(ag—1 + agz) - - +))).

Using Horner’s rule gives O(d) multiplications. Hence, polynomial evaluation in this case has
bit complexity
O(sd).
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Comparing the Two Methods. The first method is preferable when the polynomial has high
degree and is sparse. The second method is useful when the polynomial has low degree. However,
if the polynomial has high degree and is dense, pick your poison. ;-)

2 Systems of Linear Congruences

In this section, we investigate the task of finding a common solution for a set of linear congruences.
For example, the following system represents the most general case.

a1z +by = 0 (mod m)
asx +bs = 0 (mod ms)
axx+by = 0 (mod myg),

where a;, bj, m; € Z and m; > 0. There are three questions for which we would like to find answers:
1. When does a system have a solution(s)?
2. How many solutions are there, and can we characterize all of them?
3. Is there an efficient algorithm to find a solution or characterize all solutions?
Before we investigate these questions, please note the following observations.

Observation 2.1 Consider a;z; +b; =0 (mod m;). If we set d; = ged(a;, m;), then it is easy to
see from the relation that d; | b;. If, however, ged(a;, m;) [ b;, then there is no solution. Otherwise,
we can reduce the linear congruence to

Henceforth, we assume that all congruences have been reduced in this way such that ged(a;, m;) = 1.

Observation 2.2 Given the linear congruence a;z;+b; =0 (mod m;) where ged(a;, m;) =1, we
know a; has a multiplicative inverse @, ' € Z/(m;) because a; and m; are relatively prime. Hence,
the congruence a;z; + b; =0 (mod m;) can be rewritten as
x; +ai_1bi = 0 (mod m;), or
T; = —ai_lbi (mod m;).

Henceforth, we will restrict our attention to systems of linear congruences where each congruence
has the form z = z; (mod m;).

Example 2.1 Consider the following system of linear congruences.

4r+2 = 0 (mod 6)
3z+4 = 0 (mod5)
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Based on the first observation, we can reduce the first equation because ged(4,6) = 2. Applying
the second observation to the resulting equations yields the following equivalent system of linear
congruences.

1 (mod 3)
= 2 (mod 5)

Now we can proceed to answering the three questions stated above.

2.1 Chinese Remainder Theorem

The Chinese Remainder theorem answers all three of the questions posed with respect to systems
of linear congruences.

THEOREM 1 (Chinese Remainder Theorem, version 1, Theorem 5.5.2 in [1]) Let mqy,ma, ..., my
be positive integers that are pairwise relatively prime. Let m = mymg---myg. Then, given integers
T1,T2,..., Tk, there is an integer © such that

x=x; (mod m;).
Moreover, x is unique modulo m.

Proof: Define f; = m/m; for 1 < i < k, then f; = 0 (mod m;) when i # j. Note that
ged(fi,m;) = 1, so there is a multiplicative inverse 7;1 for f; in (Z/(m;))*. Define e; = fif; *.
Then e; is congruent to 1 modulo m;, yet congruent to 0 modulo m; for all j # i. The required

common solution is then,
k

r = E €;T;.

i=1
This is easy to see from the fact that x = x; (mod m;) for every i (by definition). This proves
the existence of a common solution.
To prove the uniqueness of solutions, assume there is another solution y = z; (mod m;) for
all i. Then z —y =0 (mod m;). Because the m; are pairwise relatively prime, we also know that
z—y=0 (modm)and hence, z=y (modm).

Example 2.2 Consider the following system of linear congruences.
7 (mod 15)

= 2 (mod 4)
6 (mod 7)

For this problem, we have 1 = 7, o = 2, 3 = 6, m; = 15, me = 4, and m3g = 7. Note that

the m; are pairwise relatively prime and m = mimomg = 420. First, we compute the f; and their
inverses for 1 <3 < 3:

fi = 4-7 fo = 15-7 I3 15-4
= 98 = 105 = 60

f_fl = 7 f_gl - 1 f?jl - 3
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Next, we compute the e; for 1 <1 < 3:
e1 = fifi ' =(28)(7) = 196,
e2 = fafy' = (105)(1) = 105,
es = fafyt = (60)(2) = 120.

Finally, we add it all up to get x:

T = ejxy + exxrs + ezxrs mod 420
= (196-7)+ (105-2) 4+ (120 - 6) mod 420
= 2302 mod 420
= 202

All solutions to this system are found by adding multiples of 420 to 202.
Example 2.3 Find all solutions in Z/(21) for
102? + 11z + 3 =0.

We can factor this to get
(2z+1)(5z+3) =0 (mod 21).

A solution exists whenever one or both of these binomials is congruent to 0 modulo 21. For example,
we get a solution when

20 +1 =
5+ 3

0 (mod 3)
0 (mod 7).

To find the solution, we solve the following equivalent system.

1 (mod 3)
= 5 (mod?7)

Applying the method used in the previous example, we find that f; = 7 and fo = 3. Continuing,
we get e; = 7 and ex = 15. Hence, the solution is
x = T(1)+ 15(5),
= 82 (mod 21),
19.

Similarly, we can find other solutions.

2.2 Analysis

For the convenience of the reader, pseudocode for solving systems of linear congruences based on
the Chinese Remainder theorem is presented in Figure 1.
The bit complexity of the Chinese Remainder algorithm is characterized by the following result.
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1 m««— mimg---my

-, Mg, ay, az, ..
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'aak)

> Note that the subscripted 3 above indicates that we are looking for the coefficient

2 20

3 fori—1tok

5 f;l — EXTENDEDEUCLIDEAN(my;, fi)3

6

7 > of f; found by running the extended Euclidean algorithm.
8 e; fifi_1 (mod m;)

9 z — x+ (e;a;)
10 return z

Figure 1: Computing the Chinese Remainder Theorem

COROLLARY 2 (5.5.3in [1]) Assume that all m; > 1 and that all m; are pairwise relatively prime.

Then we can find a solution in O((Igm)?) bit operations.

Sketch of proof: Based on the assumptions, we know that k = O(lgm). Consider line 5 of the
algorithm in Figure 1. Computing each of the f; requires O((lgm;)(lg f;)) bit operations. Summing

over the k iterations of the loop, we get

k
0( lgm; lgfi> =
=1

k
(@] (lnglng)
i=1
k
0 (lng(l + log, m1)>

=1

k
6) (lgm (k + Zlog2 m>>
=1
k
6) (lgm (k + log, H m> )
=1

O (Igm(k + logy m))
O((1gm)?).

Similarly, we can prove the bit complexity of the other steps in the algorithm are O((Igm)?).

2.3 The Algebraic Form of the Chinese Remainder Theorem

THEOREM 3 (Chinese Remainder Theorem, version 2, Theorem 5.5.4 in [1]) Let mqi, mo, ...
be positive integers that are pairwise relatively prime. Then

L) (mamy - - -mg) Z L) (m1) © Z/(m2) © - - - ® L/ (my).
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Proof: Define f:Z — Z/(mima---my) 2 Z/(m1) ®Z/(ms3) ® - -- B Z/(my) by
f(n) = (n mod my,n mod ma,...,n mod myg).

By the Chinese Remainder theorem (Theorem 1), we know that f is onto. (It also tells us that
f repeats with period m.) Furthermore, f is a ring homomorphism with ker f = (m) C Z. In
other words, the kernel of f is the ideal generated by m in Z. Hence, f is an isomorphism from
Z/(mimg---my) to Z/(mq) ®Z/(ma) & --- D Z/(my).
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