Scribe Notes for Algorithmic Number Theory Class 10—June 1, 1998 1

Scribe Notes for Algorithmic Number Theory
Class 10—June 1, 1998

Scribes: Lynn Jones, Nick Loehr, and Hussein Suleman

Abstract

This class began our discussion of arithmetic in the ring Z/(n). After recalling Fermat’s Theorem
and stating Fuler’s Theorem, we analyzed the bit complexities of algorithms for addition, subtrac-
tion, multiplication, and exponentiation in Z/(n). More generally, we considered two versions of
the efficient exponentiation algorithm that work in arbitrary monoids.

1 Homework Assignment 2

We started class by going over solutions to the second homework assignment. John presented the
solution to problem 1, and Lynn presented the solution to problem 2.

2 The Ring Z/(n)
Recall that Z/(n) denotes the set of integers modulo n, which consists of the n equivalence classes
{0,1,...,n—1}.

The integers 0,1,...,n — 1 are the canonical representatives of these equivalence classes. Z/(n)
(with the usual definitions of addition and multiplication modulo n) is always a ring. Z/(n) is also
a field if and only if n is a prime. If n is composite, say n = ab where @ > 1 and b > 1, then @ and
b are zero divisors in Z/(n) since @-b=n = 0. Thus, Z/(n) cannot be a field. Conversely, suppose
p is prime. Recall the following theorem, due to Fermat.

Theorem 2.1. (Fermat’s Theorem — cf. Theorem 2.1.3) Suppose p is a prime and a is an integer
with ged(a,p) = 1. Then
a?'=1 (mod p).

From this theorem, it follows that (@) ! = a?—2 for any nonzero element @ € Z/(p). Thus, all
nonzero elements of Z/(p) have multiplicative inverses, and Z/(p) is a field.
More generally, for any n > 1, define

(Z/(n)*={acZ/(n):a-b=1 for some b € Z/(n)}.

(Z/(n))* is the set of elements in Z/(n) that have multiplicative inverses; it is easy to check that
this set forms a group under multiplication. It is also easy to check that

(Z/ ()" = {a: ged(a,n) = 1}.

Thus, (Z/(n))* consists of ¢(n) distinct elements, since ¢(n) is the number of canonical represen-
tatives that are relatively prime to n.

2 Class 10—June 1, 1998 Scribe Notes for Algorithmic Number Theory

In fact, if we take any @ € (Z/(n))* and apply the extended Euclidean algorithm to the pair
(n,a), we obtain a pair of integers (z,y) such that

nx +ay = 1.

Thus, ay =1 (mod n), so ay = 1 in Z/(n). Thus, (@) ! =7 in Z/(n). This observation leads to
an efficient algorithm for computing multiplicative inverses in (Z/(n))* (cf. Section 3.3).

Another method of obtaining the multiplicative inverse of @ is provided by Euler’s Theorem,
which is a generalization of Fermat’s Theorem.

Theorem 2.2. (Euler’s Theorem — cf. Theorem 2.1.4 and Theorem 5.1.1) Let @ € (Z/(n))*, so
that ged(a,n) = 1. Then
a®™ =1 (mod n).

Equivalently, a®™ =T in (Z/(n))*.

If n is prime, we obtain Fermat’s Theorem by noting that (Z/(n))* =Z/(n) — {0} and ¢(n) =
n — 1. As an immediate corollary to Euler’s Theorem, we see that

(a)—l — aqb(n)—l

fora € (Z/(n))*.

3 Basic Arithmetic in Z/(n)

3.1 Addition and Subtraction

Using the canonical representatives 0,1,...,n — 1 for Z/(n) allows us to represent any element
a € Z/(n) using lgn bits. Thus, to compute ¢ =a+ b in Z/(n):

1. Find a + b, the ordinary integer sum of integers a and b. This addition requires O(lgn) bit
operations.

2. Take the sum to be € = (a+b) mod n. Since 0 < a+b < 2n, this reduction can be computed
quickly by subtracting n one time if a + b exceeds n — 1. This subtraction requires O(lgn)
bit operations.

Hence, the bit complexity for addition in Z/(n) is O(Ign). Subtraction is performed in an analogous
fashion and also has bit complexity O(lgn).

3.2 Multiplication

To compute ¢ = a- b in Z/(n):

1. Find a - b, the ordinary integer product of the integers a and b. This multiplication requires
O((1gn)?) bit operations.

2. Divide the product ab by n to obtain an integer quotient and remainder, viz.
ab=qgn+r with 0 <r <n.
This division also requires O((Ign)?) bit operations. The product € is now given by 7.

Hence, the bit complexity for multiplication in Z/(n) is O((Ign)?).

Scribe Notes for Algorithmic Number Theory Class 10—June 1, 1998 3

3.3 Finding Multiplicative Inverses

Since Z/(n) is not necessarily a field, we cannot, in general, define a division operation. However,
we can find a multiplicative inverse for every element in Z/(n) whose canonical representative is
relatively prime to n.

Let @ € (Z/(n))* so that a is relatively prime to n. Then apply the Extended Euclidean
algorithm to (n, a). Assume that this takes m steps. The algorithm will generate a set of coefficients,
(z,y), such that nz 4+ ay = 1. The integer y is a representative of the multiplicative inverse of a.
To find the canonical representative, we then need to calculate y mod n.

Now, using the previously derived formula for continuants we know that

a]=[8n dema][]

The continuants in the above equation are evaluated at the a;’s generated by the Extended
Fuclidean algorithm.
Then, by inverting the matrix, we get

G I ke | F

Xi =aj.

X;=a;.

So the multiplicative inverse of @ is y = (—1)™"1Q[0, m — 2]| x,=q;-

Now, to achieve a bound on the time complexity, it is desirable that y not be too large.

It can be observed that the highest order term in Q[0,m — 2] is XoX;...X,, 2. By Exercise
4.5, it has been proven that |aga; ...am—2| < n. Thus, asymptotically, the calculation of y is
dominated by the highest order term, which is O(n). Thus, y can be represented in O(lgn) bits.

Now, to calculate y mod n, we can perform the division by repeated subtraction, exploiting
the fact that y is O(n). Since the number of subtractions will be bounded by a constant, the
computation is O(lgn).

Corollary 3.1. Ifa € Z/(n) with ged(a,n) = 1, then we can compute (a) 1 in O((Iga)(Ign)) bit
operations.

Thus, using this construction, we can compute multiplicative inverses efficiently.

4 Exponentiation

4.1 An Efficient Algorithm for Exponentiation

Assume (S, -) is a semigroup. This implies that an associative binary operation is defined on S.
Assume also that a multiplicative identity, usually denoted 1, exists for this semigroup (this is
necessary to define a” = 1 for any a € S). If S does not have an identity, we can easily add one to
S to create a monoid.

Denote the exponentiation operation as a€ for e > 0 and a € S.

There exist many different approaches for evaluating this expression. The naive approach
simply computes the product of e a’s. This can, however, be very time-consuming if e is large.

An alternative approach is to exploit the observation that any power can be expressed by the
following recursive definition:

4 Class 10—June 1, 1998 Scribe Notes for Algorithmic Number Theory

a-a® ! if eis odd;
a® = (ae/2)2 if e > 0 and e is even;
1 ife=0.

This definition can be recast as a recursive algorithm to calculate powers as follows:

Power (a, €)

(1) if e =0 then return 1;

(2) else if e mod 2 =0 then

(3) return (Power (a,e/2)?);
else

(4) return a - Power (a,e — 1);

Example 4.1. For this example, we will use 2 X 2 matrices of integers. Note that matrix multi-
plication is associative, and has an identity, namely the 2 x 2 identity matrix I. We trace a sample
execution of the algorithm in the following table; the recursive calls are listed going down and the
resulting operations are listed from the bottom up.

First, define matrix A:
-1 3
2 1

We wish to find A9.

povert4? 49 | (o oann)
Power(A,4) (A?)? (%9 fg)
Power(A,2) A? ((7) (;)
Power(A,1) AT (;1 ?)
A

Table 1: Recursive calls in power algorithm to find A°.

You can see from the table that this recursive call requires three squarings and two multiplica-

tions by the matrix A, whereas the naive approach would have required eight multiplications by

A.

Scribe Notes for Algorithmic Number Theory Class 10—June 1, 1998 5

Complexity Analysis

Suppose Power is called with a nonzero exponent. This exponent is either even or odd. In the
former case, the recursive call in line (3) executes immediately and cuts the size of the exponent
in half. In the latter case, the exponent is reduced by one in line (4), but the next recursive
call is on an even exponent. Hence, after at most two recursive calls, the size of the exponent is
always halved. Thus, the number of recursive function calls is O(lge). The time complexity is thus
O(slge), where s is the complexity of multiplication in the semigroup (S, -). To particularize this
algorithm to Z/(n), in which we are computing a® mod n for 0 < a < n and e > 0, this algorithm
requires O((lgn)?(Ige)) bit operations (Theorem 5.4.1).

4.2 An Alternative Algorithm for Exponentiation

The exponent, e, in its binary representation, can be expressed as a sum of powers of 2:
e=bi2F +bp_ 12571 + o 512 + by.
Then, for e > 0, by, = 1 and b; € {0, 1} for 0 <i < k. So we have

k
ae g aZi‘C:O b227’ =]:[a/b'LQ’L‘
=0

Each a; in the product will be either 1 (when b; = 0) or will be a?". The steps to the alternative
algorithm are to create a table of a?', and use the table to look up the factors in

Complexity Analysis

Building the table of powers requires O(lge) squarings and O(lge) multiplications. For this algo-
rithm in particular, we must also examine its space requirements. (Although the recursive Power
algorithm has space requirements for the stack, it could be rewritten iteratively. In this case, stor-
age of the table is an explicit part of the algorithm.) The table lookup algorithm requires storage
space for ©(lge) elements of S.

This alternative algorithm has the same time complexity and potentially greater space com-
plexity than the Power algorithm, but it is useful when the computations may be repeated and
particularly when something is known about the exponent. Notice that there are O(lge) multipli-
cations for this algorithm. The exact number of multiplications depends not only on the size of
e, but also on how many bits in e’s binary representation are 1 (i.e., how many b; = 1). If, for
example, e is some power of 2, this algorithm has much better time complexity than the previous
one.

5 Next Class

In the next class, we will conclude the discussion of the exponentiation algorithms and begin talking
about the Chinese Remainder Theorem.

6 Class 10—June 1, 1998 Scribe Notes for Algorithmic Number Theory

References

[1] E. BACH AND J. SHALLIT, Algorithmic Number Theory, The MIT Press, Cambridge, Mas-
sachusetts, 1996.

