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Abstract

This class is an introductory class for CS6104: Algorithmic Number Theory. The syllabus and
motivations for the class are covered. Following the introductory material, we begin a review of
number theory.

1 Introductory Material

Algorithmic number theory approaches number theoretic problems from a computational point of
view. We are interested in studying problems, giving algorithms for solving the problems, and
classifying how difficult problems are. The syllabus for CS6104: Algorithmic Number Theory is
available from the class home page, http://ei.cs.vt.edu/ " cs6104/. Prerequisites for the class
include a course in algorithm analysis and a course in probability. A course in abstract algebra
covering groups, rings, and fields is also helpful.

The textbook for the course is Algorithmic Number Theory, Vol. 1: Efficient Algorithms by
Bach and Shallit [1]'. As the title of the textbook suggests, the main focus of the course is
algorithms for problems that can be efficiently solved. Towards the end of the class, other topics
not in the text may also be covered. See the syllabus for more details.

Homework will be assigned approximately once a week and will be due approximately one week
from when it is assigned. Use of symbolic computation or algebra packages such as Mathematica,
Maple, or GAP may be helpful for solving the problems. Students may collaborate together to
solve the problems as long as each student prepares his or her own solutions and credit is given
appropriately. Homework submissions must be given in IXTEX.

2 Motivations

The theory of numbers is an interesting topic. It provides fun problems such as those given in
Beiler [2]. Also, it is the source of classic problems such as Fermat’s “Last Theorem”, which was
proved recently by A. Wiles and R. Taylor. The statement of Fermat’s Theorem is simple, but its
proof eluded mathematicians for hundreds of years.

Theorem 2.1 (Fermat’s Last Theorem). There ezists no nontrivial integer solutions to z™ +
y* = 2" for n > 2.

More recently, number theory plays an important role in cryptography. The RSA [3] public
key encryption scheme relies on the assumption that factoring large numbers is a difficult task,
even for powerful computers. The connections between algorithmic issues and number theory are
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Figure 1: Connections between numbers, algebra, number theory problems, and algorithmic issues.
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the motivation behind algorithmic number theory. Figure 1 shows connections between numbers,
algebraic structures, number theoretic problems, and algorithmic issues.

The goal of the class is to study number theoretic problems and algorithmic solutions for the
problems, if they are known. When the solutions are known, we will attempt to analyze the
complexity of the known algorithms. Whether solutions are known or unknown, we will attempt
to classify the difficulty of the problems studied.

3 Number Theory

Now, we review some basic number theory. Number theory is a notation rich topic, so notation
may not be defined completely in the notes. An index of notation used in the course is on page 487
of the textbook. Also, many theorems are presented without proof. The textbook and references
used in the class contains the proofs or proofs are given as exercises. When proofs are given in the
textbook, they are referenced in the notes.

3.1 Primes

The integers Zare the focus in number theory. We know how to add, subtract, and multiply integers.
While the additive structure of the integers is easily understood, the multiplicative structure is
challenging. A prime is an integer p > 1 whose only positive divisors are 1 and p. An integer
n > 1 that is not prime is composite. We can write every positive integer as a unique product of
primes.

Theorem 3.1 (Theorem 2.1.2: Fundamental Theorem of Arithmetic). Every positive in-
teger n can be expressed as a product of nontrivial powers of distinct primes

n=pi'py ot
and up to rearrangement of the factors, this prime factorization is unique.

The proof of this theorem is given as Exercise 6 in Chapter 2. The fundamental theorem of
arithmetic helps us understand the multiplicative properties of integers.

Example 3.2. The unique prime factorization of 100 is
100 = 2% - 52,

Let us count the number of primes less than or equal to a real number z. This value is denoted
as 7(x) and is written
m(z) = Z 1.

p<z

The following theorem helps us understand how 7(x) grows as x approaches infinity.

Theorem 3.3 (Prime Number Theorem). Asymptotically, the number of primes is given by
this limit.

lim &y,
z—oo z/ log

1References to theorems, chapters, exercises, etc., without further attribution always refer to this text.
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z | m(x)|x/logz

1 0 00

2 1 2.89

3 2 2.73

4 2 2.89

) 3 3.11
10 4 4.34
100 25 21.71

Table 1: Values for 7(z) and x/logx

The prime number theorem tells us that 7(x) is approximately x/logx as = gets large. Intu-
itively, if we are given a number z, we expect to find a prime by picking log z random numbers
close to x. Table 1 evaluates 7(x) and z/logx at some small values.

3.2 Modular Arithmetic

Related to the integers are the integers modulo an integer n, denoted Z/(n). If a and b are arbitrary
integers, we write a = b (mod n) when n | a — b; this notation is read “a is congruent to b, modulo
n.” Note that = is an equivalence relation on Z.

Example 3.4. Consider Z modulo n = 6, Z/(6). The equivalence classes of Z are

., —12,-6,0,6,12, ...}
oy —11,-5,1,7,13,...}
.., —10,-4,2,8,14, ...}
.y—9,-3,3,9,15,...}

. —8,-2,4,10,16,...}
vy —T7,—1,5,11,17,...}
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We can define a function, written a mod n that returns a canonical representative for the
equivalence class containing the integer a as follows:

a, if n = 0;
a—nl], otherwise.

amodn:{

Example 3.5. The unparenthesized “mod” function is applied to three different pairs of numbers.

5mod0 =
5 mod 3
65 mod7 =

If we define addition, subtraction, and multiplication for Z/(n) by first performing the operation
as if the number is in Z, and then using a mod n to give the representative of the equivalence class
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for the result, Z/(n) has the same algebraic operations as Z. Be aware that we may use the same
notation to represent objects in two different algebraic structures. For example, 3 may be in Z or
in Z/(7). Technically, 3 is different in each case, but this abuse of notation is convenient and often
clear.

3.3 Greatest Common Divisor

Suppose we have two positive integers m and n. A number d is a common divisor of m and n if
d | m and d | n. The greatest common divisor, denoted gcd(m,n), is the maximum common
divisor. We say that m and n are relatively prime if ged(m,n) = 1.

Example 3.6. Here are the greatest common divisors for three different pairs of integers.

ged(5,9) = 1
ged(2,6) = 2
ged(900,1200) = 300

Exercise 3.7. Try using Mathematica or another system to compute gcd(10'%° — 27,1020 4 27).

An application of the greatest common divisor is Fermat’s Theorem. Fermat’s Theorem relates
the numbers relatively prime to a prime p and the equivalence class of that number raised to the
p — 1 power.

Theorem 3.8 (Fermat’s Theorem). Ifp is a prime and ged(a,p) = 1, thena?~! =1 (mod p).

Example 3.9. Suppose that p = 5, then p — 1 = 4. The following table demonstrates Fermat’s

theorem.

a*| a* mod 5

0

1
16
81
256
525
6 | 1296
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The proof of Fermat’s Theorem is given as Exercise 13 in Chapter 2 of the textbook. Fermat’s
Theorem implies that every non-zero element @ in Z/(p) has a multiplicative inverse. Let 1 be the
multiplicative identity in Z/(p). Then the multiplicative inverse of @ is given by

—

a’” " =

[

a}p72

S]]
|

So, aP~2 is the multiplicative inverse of @.

4 Next Time

The next class continues the review of number theory, and begins the review of asymptotics.
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