CS 6104: Solutions to Homework Assignment 5 June 19, 1998 1

Solutions to Homework Assignment 5
CS 6104: Algorithmic Number Theory
Problem 1. [Solution Courtesy of Hussein Suleman] Completely factor the polynomial
f(X) = X®4+4X°4+3X%+5

over Z/(7) using both the Berlekamp and Cantor-Zassenhaus algorithms. You may use Mathematica
to do the calculations at each intermediate step, but show the results of all the steps.

Berlekamp Algorithm First we define the given constants.

In[1]:
Out [1]
In[2]: = x"8 +4 x°5 + 3x"2 + 5
Out[2]= 5 + 3*x"2 + 4%x"5 + x°8

7

p=
7
£

polydegree is a function that calculates the degree of a polynomial by counting the number of
coeflicients of positive powers of x. This is then used to calculate the degree of f.

In[3]:= polydegreely_]:=Length[CoefficientList[y, x]]-1
In[4] := degf = polydegree[f]
Out [4]= 8

7(zx) is defined and used to calculate the table of 7 values for all powers of x in the basis of

(
(Z/ (7)) /(f)-

In[5]:= taulx_] := x"p
In[6] := taulist=Table[PolynomialMod[tau[x~i], f, {Modulus->p}], {i, 0, degf-1}]
Out[6]= {1, x°7, 5 + 3%x"2 + 6%x"3 + 2*%x"5 + 2%x"6,
4xx + 3*xx"2 + x°3 + 3*%x74 + 4%xx”75,
2%x + bxx"2 + 3%x73 + 5*x"4 + 2*x"b5 + bxx"6 + 3%x77,
X"2 + 2%x"3 + 6%x74 + 3%x"5 + b*x"6 + 2*x77,
6*xx + 4*xx"2 + xX"3 + 4xx"4 + 4xx"5 + 4%x"6 + x°7,
4xx + 3*%x"2 + x"3 + 4*x”4 + 3*x"5 + 3*x"6 + 5xx"T}

o oK O
+ o+ o+ o+

The coefficients are extracted and arranged into the matrix T. T — [is calculated and row-
reduced.

2 June 19, 1998 CS 6104: Solutions to Homework Assignment 5

In[7] := T=Transposel[
Map[(Join[CoefficientList [#, x],Table[0,{degf-polydegree[#]-1}]1]1)%&,
taulist]]
Out[7]= {{1, 0, 5, 0, 5, 0, 6, 6}, {0, O, O, 4, 2, 1, 6, 4},

{0, o, 3, 3, 5, 1, 4, 3}, {0, 0, 6, 1, 3, 2, 1, 1},

{0, 0, 0, 3, 5, 6, 4, 4}, {0, 0, 2, 4, 2, 3, 4, 3},

{0, o, 2, 0, 5, 5, 4, 3}, {0, 1, 0, O, 3, 2, 1, 5}}
In[8]:= TminusI = Mod[T-IdentityMatrix[degf], pl]

Qut[8]= {{o0, 0, 5, 0, 5, 0, 6, 6}, {0, 6, O, 4, 2, 1, 6, 4},
{0, o0, 2, 3, 5, 1, 4, 3}, {0, 0, 6, 0, 3, 2, 1, 1},

{0, o, o, 3, 4, 6, 4, 4}, {0, 0, 2, 4, 2, 2, 4, 3},
{0, 0, 2, 0, 5, 5, 3, 3}, {0, 1, 0, O, 3, 2, 1, 4}}

In[9] := RRTMinusI=RowReduce [TminusI, {Modulus->p}]

Qut[9]= {{o0, 1, 0, O, O, O, O, 6}, {0, O, 1, O, O, O, O, 4},
{0, o, 0, 1, 0, 0, O, 1}, {0, 0, 0, O, 1, O, 4, 0},
{0, o, o0, 0, 0, 1, 5, 6}, {0, 0, 0, O, O, O, O, O},
{0, o, o, 0, 0, 0, 0, 0}, {0, 0, 0, O, O, O, O, O}}

s’ 3’ b

s’ s s’ s b

We then calculate ker (T — I). The basis for this kernel has three vectors, so there must be
three irreducible factors in f.

In[10] := ns=NullSpace [RRTMinusI, Modulus->p]
Out[10]= {{0, 1, 3, 6, 0, 1, 0, 1}, {0, 0, O, O, 3, 2, 1, O},
{1, 0, 0, 0, 0, 0, O, O}}

Now we choose a random element in the kernel of T'— 1. ca is the element and a is its polynomial

representation.
In[11]:= ca=ns[[2]]
Qut[11]= {0, O, O, O, 3, 2, 1, 0O}

In[12]:= a=ca.Table[x"i, {i, 0, degf-1}]
Out[12]= 3*x"4 + 2*%x"5 + x"6

Finally, we can generate a list of factors by taking the ged of f with each of a — a, for all
a€Z/(n).

In[13]:= BerlFactors =
Select[Table[
PolynomialGCD [PolynomialMod[a-i, p], f, Modulus->pl, {i, 0, p-13}1,(
polydegree[#]>0 && polydegree [#]<degf)&]
Out[13]= {3 + B*x + 4*xx"3 + x~4, 3 + x, 6 + 2%x + x~3}

To verify the result, we can check that none of the factors are multiples of any other, and that
the product of the three factors yields f. Then, since the basis has 3 vectors and we have found 3
irreducible factors, we know that we have found all the factors of f.

CS 6104: Solutions to Homework Assignment 5 June 19, 1998 3

In[14] := Map[(PolynomialGCD [BerlFactors[[#[[1]]1]], BerlFactors[[#[[2]]1]],
Modulus->pl)&, {{1,2},{1,3},{2,3}}]

Out[14]= {1, 1, 1}

In[15] := Expand[Apply[Times, BerlFactors], Modulus->p]

Out[15]= 5 + 3%x"2 + 4*x"5 + x"8

Cantor-Zassenhaus Algorithm This algorithm is identical to the Berlekamp one up until the
calculation of the nullspace. Thereafter, we test random elements from the nullspace for the given
conditions.

al is the first random element used and it generates the factor g1.

In[16] := cal=Mod[ns[[1]]1+2ns[[2]]1+3ns[[3]], p]
Qut[16]= {3, 1, 3, 6, 6, 5, 2, 1}

In[17]:= al=cal.Table[x"i, {i, 0, degf-1}]

Out[17]= 3 + x + 3*x"2 + 6%x"3 + 6%x"4 + bxx"5 + 2*x"6 + x°7
In[18] := gi=PolynomialGCD[al, f, Modulus->p]

OQut[18]= 1

In[19]:= s1 = PolynomialMod[Expand[al~((p-1)/2)], f, Modulus->p]
Out[19]= 4 + 2%x + 6%x"2 + b*x"3 + 2*x"5 + 2*x"7

In[20]:= gl = PolynomialGCD[s1-1, f,Modulus->p]

Out [20]= 3 + B*x + 4xx"3 + x74

a2 is the second random element used and it generates the factor g2.

In[21]:= ca2=Mod[2ns[[2]]1+ns[[3]1], p]
Qut[21]= {1, 0, O, O, 6, 4, 2, 0}

In[22] := a2=ca2.Table[x"i, {i, 0, degf-1}]
Out[22]= 1 + 6*x"4 + 4%x"5 + 2*x76

In[23] := g2=PolynomialGCD[a2, f, Modulus->p]

Out[23]= 3 + x

a3 is the third random element used and it generates the factor g3.

In[24] := ca3=Mod[2ns[[1]1]1+3ns[[2]], p]

Qut[24]= {0, 2, 6, 5, 2, 1, 3, 2}

In[25] := a3=ca3.Table[x"i, {i, 0, degf-1}]

OQut [25]= 2*x + 6*x”2 + b*x"3 + 2*%x"4 + x"5 + 3*%x"6 + 2*xx77
In[26] := g3=PolynomialGCD[a3, f, Modulus->p]

Out[26]= 6 + 2*xx + x~3

CZFactors is the list of factors. To verify the result, we can once again check that none of the
factors are multiples of any other, and that the product of the three factors yields f. Then, since
the basis has 3 vectors and we have found 3 irreducible factors, we know that we have found all
the factors of f.

4 June 19, 1998 CS 6104: Solutions to Homework Assignment 5

In[27] := CZFactors={gl, g2, g3}

Out[27]= {3 + B*x + 4*xx"3 + x"4, 3 + x, 6 + 2%x + x~3}

In[28] := Map[(PolynomialGCD[CZFactors[[#[[1]11]], CZFactors[[#[[2]1]1]1],
Modulus->pl)&, {{1,2},{1,3},{2,3}}]

Out[28]= {1, 1, 1}

In[29] := Expand[Apply[Times, CZFactors], Modulus->p]

Out[29]= 5 + 3*x~2 + 4*x"5 + x78
Thus, in summary, both algorithms yield the list of factors:

{z* + 423 + 52+ 3,2+ 3,23+ 22 4 6}

Problem 2. [Solution Courtesy of Scott Guyer| Consider the following instance of the
Merkle-Hellman public-key encryption scheme:

p = 1239671
yi = 455933
ys = 735485
ys = 640682
ys = 878709
ys = 1102018
Y = 869434.

Do the following.

A. Implement the algorithm for solving low density SUBSET SUM problems in Mathematica.
Note that the lattice basis reduction algorithm is built into Mathematica as the function
LatticeReduce.

B. Show how to use the algorithm to decrypt the message

t = 1238514.

C. Bonus subproblem: Recover the hidden keys ¢ and d and the superincreasing sequence
I, X2, T3, T4, 5, L6

used to construct the above scheme. THIS SUBPROBLEM IS OPTIONAL!

CS 6104: Solutions to Homework Assignment 5 June 19, 1998 5

SubsetSum[a_List, sum_Integer, p_Integer] := Modulel[

{m, n, A, B, y},
n = Length[a];
m = Ceiling[Sqrt[nl/2 1;

A = MatrixExpand[IdentityMatrix[n],
Table[1/2,{i,n}], m * Append[a,sum]];
B = LatticeReduce[Mod[A,p] 1;

For[i=1,i<=Length[B],i++,
y = BL[il];
If[(y[[n+1]] == 0) && PMHalf [Takel[y,nl],
If[CheckSum[a,Takel[y,n],sum,p],
Return[Take[y,n] + 1/2] 1;
If[CheckSum[a,-Takel[y,n],sum,p],
Return[-Take[y,n] + 1/2]]
]
1;
Return[{}]

A. Implement the algorithm for solving low density SUBSET SUM problems in Mathematica.
Note that the lattice basis reduction algorithm is built into Mathematica as the function
LatticeReduce.

The implementation is the same as that in the handout. We just want to make sure that the
arithmetic is modular at certain points in the algorithm.

Note that the algorithms uses 3 helper functions. In particular, MatrixExpand, PMHalf, and
CheckSum. MatrixExpand takes the given matrix and augments it with the given row and
column vectors. The assumptions are that if the given matrix is square with dimension n,
then the row and column vectors have length n + 1; and that the n 4+ 1 row and column
entries are identical. PHHalf just checks to see that every entry in the given vector is plus or
minus one-half. Finally, CheckSum uses vector dot products to compute the linear sum of its
given vectors modulo the modulus p and compares it to sum. All three of these routines are
shown below.

B. Show how to use the algorithm to decrypt the message

t = 1238514.

Using the implementation of the SubsetSum function presented above, the message 1238514
can be decode by executing the following Mathematica code.

In[2] := SubsetSum[{455933, 735485, 640682, 878709, 1102018, 869434},
1238514,

6 June 19, 1998

CS 6104: Solutions to Homework Assignment 5

CheckSum[a_List, y_List, sum_Integer,p_Integer] := Module[{},

If[Mod[a . (y + 1/2),p] == sum,

Return[Truel
1;
Return[False]
1;

PMHalf[1_List] := Modulel {3},
For[i=1, i<=Length[1l], i++,

If[Abs[1[[i]1] !'= 1/2,
Return[False]
]
1;
Return[True]

1;

MatrixExpand[m_, row_List, col_List]

For[i=1,i<=Length[m],i++,

r = Append[m[[il]], col[[il] 1;

AppendTo [M, r]
1;

:= Module[{M={3}},

r = Append[Table[1/2,{i,1,Length[m]}], col[[Length[m]+11] 1;

AppendTo [M,r];
Return([M];
1;

CS 6104: Solutions to Homework Assignment 5 June 19, 1998 7

1239671]
Out[2]= {0, 1, 1, O, 1, O}

C. Bonus subproblem: Recover the hidden keys ¢ and d and the superincreasing sequence
Z1,T2, T3, T4, L5, L6

used to construct the above scheme.

To break the code, all we need is a d such that the sequence dy mod p is superincreasing.
Once such value is d = 745. In this case, we get the superincreasing sequence

x = 745y mod 1239671 = {231, 1743, 34755,91917, 341208, 620068}
Indeed, this is superincreasing, and
x(0,1,1,0,1,0) = 745t mod p = 377706.

To recover ¢, we can just solve dP~2 mod p because we know that p is prime. Hence, ¢ =
688891.

