Solutions to Homework Assignment 4 CS 6104: Algorithmic Number Theory

Problem 1. [Solution Courtesy of Wen Wang] Chapter 6, problem 9.

Suppose

$$f = \sum_{i \le s} c_i X^i$$
$$g = \sum_{i < t} a_i X^i$$

 $f = g^2$ if and only if:

1. s = 2t; and

2.
$$\sum_{i < s} c_i X^i = (\sum_{i < t} a_i X^i)^2 = \sum_{i < 2t} (\sum_{j=i-t}^t a_j a_{i-j}) X^i$$

That is,

1) s = 2t; and

2)
$$c_i = \sum_{j=i-t}^t a_j a_{i-j} \quad (i \le s).$$

If k is of characteristic 2, then the conditions are:

- 1. s = 2t
- 2. For the coefficients:

$$c_{i} = \sum_{j=i-t}^{t} a_{j} a_{i-j}$$

$$= \begin{cases} a_{i/2}^{2} + 2 \sum_{j=i/2+1}^{t} a_{j} a_{i-j} & (i = 2t, 2t - 2, \cdots) \\ 2 \sum_{j=(i+1)/2}^{t} a_{j} a_{i-j} & (i = 2t - 1, 2t - 3, \cdots) \end{cases}$$

$$= \begin{cases} a_{i/2}^{2} & (i = 2t, 2t - 2, \cdots) \\ 0 & (i = 2t - 1, 2t - 3, \cdots) \end{cases}$$

If k is not of characteristic 2, then the conditions are:

1) s=2t; and

2) For the coefficients:

$$c_i = \sum_{j=i-t}^t a_j a_{i-j} = \begin{cases} a_t^2 & (i=s) \\ 2a_t a_{i-t} + \sum_{j=i-t+1}^{t-1} a_j a_{i-j} & (i< s) \end{cases}$$

That is,

$$a_t = \sqrt{c_s}$$

$$a_i = \frac{c_{t+i} - \sum_{j=i+1}^{t-1} a_j a_{t+i-j}}{2a_t} \quad i < t.$$

This requires that c_s be a square.

Hence, if k is of characteristic 2, f is a square in k((1/x)) if and only if deg(f) is even, and $c_{2i-1} = 0$ $(i \le s/2)$. If k is not of characteristic 2, f is a square in k((1/x)) if and only if deg(f) is even, and the first coefficient is a square in k.

Problem 2. [Solution Courtesy of Craig Struble] This problem is inspired by problem 13 in Chapter 6. For $m \ge 1$, define

$$\tau(m) = \frac{m}{\phi(m)},$$

where ϕ is the Euler phi function.

- **A.** For what value of m, where $1 \le m \le 10,000,000$, is $\tau(m)$ maximized?
- **B.** More generally, for what values of m (as m goes from 1 to ∞), does $\tau(m)$ reach new maxima? (A new maximum is an m such that $\tau(m') < \tau(m)$, whenever m' < m.)
- **C.** Use methods from Chapter 2 to show Landau's result that $\tau(m) = O(\log \log m)$.
- **D**. Fix a prime p. Give an asymptotic lower bound on the probability that a randomly selected polynomial in $\mathbb{F}_p[X]$ of degree n is primitive.

A. The value at which $\tau(m)$ is maximized where $1 \le m \le 10,000,000$ is

$$m = 9,699,690$$

= $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19$

Part B explains why this is the maximum value.

B. Suppose $m = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$ is the unique prime factorization of m. Equation (2.2) on page 23 of the text states

$$\phi(m) = \prod_{1 \le i \le k} (p_i - 1) p^{e_i - 1}.$$

Simplifying $\tau(m)$,

$$\tau(m) = \frac{m}{\phi(m)}$$

$$= \frac{p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}}{(p_1 - 1) p_1^{e_1 - 1} (p_2 - 1) p_2^{e_2 - 1} \cdots (p_k - 1) p_k^{e_k - 1}}$$

$$= \frac{p_1 p_2 \cdots p_k}{(p_1 - 1) (p_2 - 1) \cdots (p_k - 1)}.$$

The value of $\tau(m)$ depends only on the prime factors of m, regardless of their exponents. So, consider only values of m that are the product of unique primes. Each prime p contributes a factor of

$$\frac{p}{p-1} = \frac{1}{1-\frac{1}{p}}$$

to $\tau(m)$. Clearly, if x < y, then $\frac{1}{1-\frac{1}{x}} > \frac{1}{1-\frac{1}{y}}$. So $\tau(m)$ is maximized by multiplying primes that are as small as possible; that is, $\tau(m)$ is maximized when m is the product of the first k primes, and the maximum changes when m is multiplied by the next prime. So, to find the value m that maximizes $\tau(m)$ when $1 \le m \le n$, multiply consecutive primes p_i together until $m = p_1 p_2 \cdots p_k \le n < p_1 p_2 \cdots p_{k+1}$.

C. For this part, assume that $m = p_1 p_2 \cdots p_k$ is the product of the first k primes. We see from Part **B** that

$$\tau(m) = \prod_{i=1}^k \frac{1}{1 - \frac{1}{p_i}}.$$

To use the techniques in Chapter 2, we need to manipulate the product and find a sum that can be bounded. Consider writing

$$\tau(m) = \prod_{i=1}^{k} e^{f_i}$$

where e is the exponential and f_i is a polynomial such that

$$e^{f_i} = \frac{1}{1 - \frac{1}{p_i}}.$$

Hence,

$$f_i = \ln\left(\frac{1}{1-\frac{1}{p_i}}\right)$$

Using the laws of logarithms and Maclaurin expansion,

$$\ln\left(\frac{1}{1-\frac{1}{p_i}}\right) = -\ln\left(1-\frac{1}{p_i}\right)$$

$$= \frac{1}{p_i} + \frac{1}{2p_i^2} + \frac{1}{3p_i^3} + \cdots$$

$$= \frac{1}{p_i} + O\left(\frac{1}{p_i^2}\right)$$

So, $f_i = \frac{1}{p_i} + O\left(\frac{1}{p_i^2}\right)$. Now $\tau(m)$ can be written as

$$\tau(m) = \prod_{i=1}^{k} e^{\frac{1}{p_i} + O\left(\frac{1}{p_i^2}\right)}$$

$$\leq \prod_{i=1}^{k} e^{\frac{1}{p_i} + \frac{N}{p_i^2}}$$

where N is a constant as defined for the O notation. Exponents add when multiplying powers together, so now we can apply techniques from Chapter 2. Begin by bounding the sum of the $\frac{1}{p_i}$ terms.

$$\sum_{p \le p_k} \frac{1}{p} \sim \sum_{n \le p_k} \frac{1}{n \log n}$$

$$\approx \int_2^{p_k} \frac{1}{t \log t} dt$$

$$= \log \log p_k - \log \log 2$$

$$= \log \log p_k$$

To bound the sum $\sum_{i=1}^k \frac{N}{p_i^2}$, note that $\sum_{x=1}^\infty \frac{1}{x^2}$ converges. Thus the sum $\sum_{i=1}^k \frac{N}{p_i^2}$ also converges to a constant, call it D. Now, ignoring constant factors, we get

$$\prod_{i=1}^{k} e^{\frac{1}{p_i} + \frac{N}{p_i^2}} \sim e^{\log \log p_k + D}$$

$$\sim e^{D} \log p_k$$

$$\sim \log p_k$$

One final step is necessary to reach our goal. How is p_k related to m? Consider $\log m$,

$$\log m = \log(p_1 p_2 \cdots p_k)$$

$$= \log p_1 + \log p_2 + \cdots + \log p_k$$

$$= \sum_{p \le p_k} \log p$$

$$\sim \sum_{n=1}^{p_k} \frac{\log n}{\log n}$$

$$= \sum_{n=1}^{p_k} 1$$
$$= p_k$$

Hence, $\tau(m) = O(\log \log m)$.

D. The number of monic primitive polynomials of degree n in $\mathbb{F}_p[X]$ is

$$\frac{\phi(p^n-1)}{n}$$
.

The total number of monic polynomials of degree n in $\mathbb{F}_p[X]$ is p^n . So the probability of selecting a primitive polynomial of degree n in $\mathbb{F}_p[X]$ is

$$\frac{\phi(p^n-1)}{np^n}.$$

In Part C, we gave an upper bound for $\tau(m)$. Use this to obtain a lower bound for $\phi(m)$.

$$\tau(m) = \frac{m}{\phi(m)}$$

$$O(\log \log m) = \frac{m}{\phi(m)}$$

$$O\left(\frac{\log \log m}{m}\right) = \frac{1}{\phi(m)}$$

$$\phi(m) = \Omega\left(\frac{m}{\log \log m}\right).$$

The probability is then bounded by

$$\begin{array}{lcl} \frac{\phi(p^n-1)}{np^n} & = & \Omega\left(\frac{p^n-1}{np^n\log\log(p^n-1)}\right) \\ & = & \Omega\left(\frac{1}{n\log\log(p^n-1)}\right) \\ & = & \Omega\left(\frac{1}{n\log(n\log p)}\right) \\ & = & \Omega\left(\frac{1}{n\log n}\right). \end{array}$$

Problem 3. [Solution Courtesy of Degong Song] Chapter 7, problem 4. Flesh out the solution in the back of the book.

From $p \equiv 3 \pmod{4}$ we get $\left(\frac{-1}{p}\right) = -1$. This means that the equation $X^2 = -1$ does not have solution in \mathbb{F}_p , so $i \notin \mathbb{F}_p$.

From $i^2 = -1$ and definition of $\mathbb{F}_p(i)$, we know

$$\mathbb{F}_p(i) = \left\{ \frac{a+bi}{c+di} \mid a,b,c,d \in \mathbb{F}_p \right\},$$

where c and d can not be 0 simultaneously.

First we show that $c^2 + d^2 = 0$ if and only if c = d = 0. Otherwise, assume $c \neq 0$, then $c^{-1} \in \mathbb{F}_p$ and hence from $(c^{-1})^2(c^2 + d^2) = 0$ we see that $(c^{-1}d)^2 + 1 = 0$ while $c^{-1}d \in \mathbb{F}_p$. This is in contradiction with $\left(\frac{-1}{p}\right) = -1$.

Thus, from

$$\frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{(c+di)(c-di)}$$
$$= \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i$$

and $c^2 + d^2 \in \mathbb{F}_p^*$, it is not difficult to verify that

$$\mathbb{F}_p(i) = \mathbb{F}_p[i] \equiv \{a + bi \mid a, b \in \mathbb{F}_p\}.$$

 $\mathbb{F}_p(i)$ (or $\mathbb{F}_p[i]$) has p^2 elements and it is an extension field of \mathbb{F}_p with operation compatible to that of \mathbb{F}_p . From book, any two finite fields with p^2 elements are isomorphic, and from above discussion, one Model of \mathbb{F}_{p^2} can be given as $\mathbb{F}_p(i)$.

Since $\left(\frac{1}{p}\right) = 1$ and $\left(\frac{p-1}{p}\right) = \left(\frac{-1}{p}\right) = -1$, we can use binary search to find a x such that $1 \le x < p-1$, $\left(\frac{x}{p}\right) = 1$ and $\left(\frac{x+1}{p}\right) = -1$. The algorithm for doing this is given bellow (in the algorithm, legendre[x,p] means $\left(\frac{x}{p}\right)$):

```
procedure FindX(left,right)
{
    if(right-left=1)
        return left;
    mid=Floor[(left+right)/2];
    if(legendre[mid,p]=1)
        return FindX(mid,right);
    else
        return FindX(left,mid);
}
```

We use FindX(1, p-1) to call the program and get x.

Use power algorithm and $\left(\frac{x}{p}\right) = x^{(p-1)/2} \pmod{p}$, the time complexity to get $\left(\frac{x}{p}\right)$ is $O((\lg p)^3)$ bit operation. Due to binary search, there will be $\log p$ such operations. After considering all the other operations, the complexity to find this x using above algorithm is $(\lg p)^4$.

Using the above x, we can construct a non-square element in \mathbb{F}_{p^2} . The fact that $\left(\frac{x}{p}\right)=1$ and

$$\left(\frac{-(x+1)}{p}\right) = \left(\frac{x+1}{p}\right)\left(\frac{-1}{p}\right)$$

$$= (-1)(-1)$$

$$= 1$$

tell us that both x and -(x+1) have root in \mathbb{F}_p . Noting that $p=3 \mod 4$, from Corollary 7.1.2, we have

$$u \equiv \sqrt{x}$$
$$= x^{(p+1)/4}$$

and

$$v \equiv \sqrt{-(x+1)}$$

= $[-(x+1)]^{(p+1)/4}$,

and these u and v can be computed using $O((\lg p)^3)$ bit operation.

Now, the element u+vi must be a non-square element in \mathbb{F}_{p^2} . Otherwise, there exists a+bi with $a,b\in\mathbb{F}_p$ such that

$$u+iv = (a+ib)^2$$
$$= a^2 - b^2 + 2abi,$$

which implies $u = a^2 - b^2$, v = 2ab, and hence

$$u^{2} + v^{2} = (a^{2} - b^{2})^{2} + (2ab)^{2}$$

= $(a^{2} + b^{2})^{2}$.

On the other hand, from $u^2 = x$, $v^2 = -(x+1)$ we see that $u^2 + v^2 = -1$. This together with above equation implies $(a^2 + b^2)^2 = -1$. Since $a^2 + b^2 \in \mathbb{F}_p$, we get $\left(\frac{-1}{p}\right) = 1$. This is in contradiction with $\left(\frac{-1}{p}\right) = -1$.

Any square roots in \mathbb{F}_{p^2} can be computed using Tonelli's algorithm. Tonelli's algorithm is nondeterministic only because it randomly chooses an element $g \in \mathbb{F}_{p^2}$ and hope it is not a square (and thus it will be a generator). Now that we have found a non-square element u+vi in \mathbb{F}_{p^2} using above procedure, we can use this u+vi as g in Tonelli's algorithm. In this situation, Tonelli's algorithm would become deterministic.

The time complexity for computing u + vi is $O((\lg p)^4)$ bit operation. The running time for the modified Tonelli's algorithm is also $O((\lg p)^4)$ bit operation (cf. Theorem 7.1.3). So, the total running time for computing square roots in \mathbb{F}_{p^2} using this method is $O((\lg p)^4)$ bit operation. So, it is deterministic polynomial time.