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Solutions to Homework Assignment 1
CS 6104: Algorithmic Number Theory

Problem 1. [Solution courtesy of Nick Loehr]| Use the techniques in Chapter 2 to derive
an asymptotic estimate for

h(l’, k) = Zpk’

p<z

where k£ > 1 is an integer. For k € {1,2,3,4} and = € {10, 50, 100,200}, use Mathematica to
compute h(z, k) precisely. Present these results in a table along with the values of your asymptotic
estimates.

Recall Theorem 2.7.1, which states that for continuously differentiable functions g,
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where €(z) = o(z/logz). Fix an integer k > 1, and set g(z) = z*. Then (1) becomes:

Tt dt g
h(z, k) = Zpk = , Togt + e(x)z® — /2 Kt Le(t) dt. (2)
p<z
First, let us estimate the integral [} ’fzgdf We will use Theorem 2.6.1 with f(z) = z¥/(logz). We
have
f'(x)  (ka*llogz — 2F71)/(log’z) klogz —1 k 1 k
f(x) z* /(log ) ~ zlogz  z  zlogx oz

We may take p = k in the theorem. Since k # 0, we obtain
/1’ thdt  xf(x) xhtl
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logt p+1 (kE+1)loga’

Knowing that e(z) = o(x/logz), it’s obvious that the two error terms e(x)z* and [; ktF='e(t) dt
are each o(z**1/logz). Hence, we have
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The following Mathematica code computes h(zx, k) precisely for the given values of = and k:

In[1]:= hlx_,k_] := Module[
{sum, i},
sum=0; i=2;
While[ i <= x,
If[ PrimeQ[i], sum = sum + ik, ];
i=1i+1
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1;

sum]
In[11]:= Table[h[10,k],{k,1,4}]
In[12]:= Table[h[50,k],{k,1,4}]
In[13]:= Table[h[100,k],{k,1,4}]
In[14]:= Table[h[200,k],{k,1,4}]

The following code computes approximations for h(z, k) using the formula just derived:

n[18]:= ah[x_,k_J1:=N[x"(k+1)/((k+1)*Log[x])]
In[19]:= Table[ah[10,k],{k,1,4}]

In[20] := Table[ah[50,k],{k,1,4}]

In[21]:= Table[ah[100,k],{k,1,4}]

In[22] := Table[ah[200,k],{k,1,4}]

The ezact results produced by Mathematica are as follows.

|z [z, )| h(z,2) | h(z,3) | h(z,4) |
10 17 87 503 3123

50 328 10466 | 385054 15169214

100 || 1060 | 65796 | 4696450 | 360663864
200 || 4227 | 565065 | 86470593 | 14185215405

The approximations produced by Mathematica are as follows.

|z || h(=z,1) | h(z,2) | h(z,3) ‘ h(z,4) ‘
10 || 21.7147 | 144.765 1085.74 8685.89

50 || 319.528 | 10650.9 399410 1.59764 x 107
100 || 1085.74 | 72382.4 | 5.42868 x 106 | 4.34294 x 10®
200 || 3774.78 | 503304 | 7.54957 x 107 | 1.20793 x 1010

Problem 2. [Solution courtesy of Nick Loehr| Let R be the ring Z/(3), and consider the
polynomial ring R[X]. Let f € R[X]| be the polynomial

f(X) = X*+3X+2.
Finally, let
I = {g(X)f(X)W(X)[g,h e RIX]}.
A. Prove that I is an ideal in R[X].

B. Let T'= R[X]/I. How many elements does T have? What are they?

C. Give addition and multiplication tables for T'.
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D. Is T a field? Why or why not?

A. Let J ={p(x)f(x) | p € R[x]}. We claim that I = J. To see this, take any p € R[z]. Letting
g =p and h =1 in the definition of I shows that J C I. Similarly, for any g, h € R[z], note
that g(x)f(x)h(x) = (9(x)h(z)) f(x). Taking p(x) = g(x)h(x) shows that I C J.

The proof that I is an ideal is now identical to the proof given in class that J is an ideal. We
repeat that proof here for completeness.

Certainly 0 € J, so J is non-empty.
Suppose p1(z) f(z) and pa(z)f(z) are arbitrary elements in J. Then

pi() f(z) + pa(2) f(z) = (pr(2) + p2(2)) f () € J,

using the distributive law and the fact that pi(z) + p2(z) € R[z]. So J is closed under
addition.

Similarly, if p(z) f(z) € J and ¢(z) € R[z], then

q(z)p(z) f(z)] = lg(x)p(z)|f(z) € J,

using the associativity of multiplication and the fact that q(z)p(z) € R[z]. So J is closed
under multiplication by elements of R[z]. Hence, J = I is an ideal in R[z].

B. The factor ring T has nine elements, namely the equivalence classes

{0,1,2,Z,x + 1,z + 2,2z, 2x + 1,2z + 2}.

To see that these nine elements are distinct, observe that I consists of all multiples of f(z) =
22 + 2. Nonzero multiples of I will clearly have degree at least 2, since the coefficient ring
Z/(3) has no zero divisors. Thus, the difference of two distinct elements of the form ag + a1z
is not in I, since this difference is a nonzero polynomial of degree less than 2.

Next, T does not have any additional elements. For, any polynomial of degree 2 or more is
equivalent to one of the polynomials listed above, since we can reduce modulo f to replace
z2 by =2 =1, 23 by z, etc.

C. The addition table for T is as follows: (Here, we write 0 for the equivalence class 0, etc.)

[+ [T o [ 1 [ 2 | a Ja+l[az+2] 2z [2z+1][2x+2]
0 0 1 2 T r+1 | z+2 2x 20+ 1 |22+ 2
1 1 2 0 z+1 | z+2 T 20+ 1|2z +2 2x
2 2 0 1 T+ 2 T r+1 |24+ 2 2x 2c+1
T T r+1 | 42 2x 2c+1|2x+2 0 1 2
r+1 r+1 | z+4+2 T 2c+1 |2z + 2 2x 1 2 0
T+ 2 T+ 2 T r+1 |2z+2 2x 20+ 1 2 0 1
2x 2x 20+ 1 |22+ 2 0 1 2 T z+1 | z+2
2c+1 |22 +1 |22+ 2 2z 1 2 0 z+1 | z+2 T
2+ 2 || 2x+ 2 2x 2r+1 2 0 1 T+ 2 T r+1
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This first table is easily computed by noting that 3 = 0 in the coefficient ring.

The multiplication table for T is easily computed if we remember to replace z2 by 1 whenever
it appears in a product. We get:

|« Jo[ 1 | 2 | = Jz+1|z4+2] 2z [2z+1]2x42]
0 0 0 0 0 0 0 0 0 0
1 0 1 2 T z+1 | z+2 2x 20+ 1|2z +2
2 0 2 1 2x 20 +2 | 2x+1 T r+2 | z+1
T 0 T 2z 1 r+1 |2z+1 2 r+2 |24+ 2
z+1 (|0 z+1 (2242 | z+1 |22+ 2 0 2z + 2 0 r+1
z+2 (|0l z+2 |22+1 | 2x+1 0 z+2 | z+2 |22+1 0
2z 0 2x T 2 2r+2 | z+2 1 2r+1| z+1
20 +1 10|22 +1 | 2+2 | x+2 0 2c+1|2z+1| z+2 0
20+ 2(|0|224+2| z4+1 (2242 | x4+ 1 0 r+1 0 2x + 2

T is not a field since not all nonzero elements have multiplicative inverses. For example,  + 1
has no multiplicative inverse, by inspection of the table above.

Problem 3. [Solution courtesy of Jeremy Rotter] Chapter 3, Problem 8.

A.
B.

C.

Give pseudocode for your algorithm to solve f(xz) = n. Analyze its worst case time complexity.

Program your algorithm in Mathematica or other symbolic computation system. Include the
Mathematica code in your solution.

Use your algorithm to determine whether a solution exists to
f(z) = 33110401974639861466556783753600023154051803888587048939300,
where f(z) is this polynomial

142'7 + 9927 + 322 + 94.

. The following is pseudocode for an algorithm which will determine whether there exists a

positive integer x such that f(z) = n, and if there is, it will return that integer. Otherwise
it will return FALSE.

The problem specification did not require a proof on why this works, so I haven’t provided
one! In a nutshell, however, this algorithm works because when x > 0, f’(x) > 0. This
means that when z > 0, the function is increasing, and hence we can rely on the fact that,
if f(a) < mn, then f(z) < n for all 0 < z < a. Similarly, if f(a) > n, then f(z) > n for all
x > a. This allows us to use a binary search to find the solution.
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DiophantineSolve(input: Diophantine function f, positive integer n)

// Set the range of integers in which we will find our answer
rbegin < 0
rend < n

// Choose our initial guess
. rend+rbegin
index « |50

val « f(index)

// Search until we find an answer or run out of integers
while (rbegin # rend) and (val # n)

// If the search range was of length 1, make it length 0
if (rend — rbegin) =1
then rbegin «— rend
else if (val > n)
then rend «— (index — 1)
else rbegin «— (index + 1)
index «— Lrend+27"beginJ

val = f(index)

if (val # n)
then return FALSE
else return index

This algorithm, in the worst case, is clearly O(logyn), since all it does is start with a search
range of [0,n], and then it uses a binary search to repeatedly half the range until it either
finds an x such that f(x) = n or it reduces the search range to a single integer. Everything
outside of the while loop in the program will run in constant time. The O(logy n) represents
the worst case number of calls to the function f, which I am assuming also runs in a constant
amount of time.

B. The following is the Mathematica code to solve f(z) = n:

(rokokok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk sk sk sk s s s s s ok sk sk ok ok ook sk ok ok sk ok sk sk sk sk sk sk sk sk sk o sk s sk sk ok ok ok
Function DiophantineSolve takes as parameters a function f and an
integer n, and returns either a non-negative integer x such that
f(x) = n or -1 if no such non-negative integer exists.
steokofeok ok ofok ok ok ok ok ok ok ok ok sk ok ok ok sk sk ok ok ok ok ook sk ok ok sk ok sk sk sk sk sk sk sk sk sk s sk s s sk ok ok sk sk ok sk ok ok ok sk ok ok ok kok sk sk sk ok sk Kok ok )

DiophantineSolve[f_, n_] := Module[{},

(* Set the range of integers in which we will find our answer x*)
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rbegin = 0;
rend = n;

(* Choose our initial guess *)
index = Floor[(rend+rbegin)/2];
val = f[index];
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(* Search until we find an answer or run out of integers *)
While[(rbegin != rend)&&(val != n),

(* If the search range was of
If [(rend-rbegin) == 1, rbegin

If[ val > n,
1;

rend = index -

length 1, make it length O *)
rend,

1, rbegin = index + 1]

index = Floor[(rend+rbegin)/2];

val = f[index];

1;

(* Set -1 as the return value if no answer was found *)

If[ val != n, index = -1];
index

C. Here are the commands I gave to Mathematica to find the solution for the given n:

(* Here we define f x*)
flx_] := 14x~17 + 99x~7 + 3x"2 + 94

(* Now we can solve part C on the homework *)
DiophantineSolve[f, 33110401974639861466556783753600023154051803888587048939300]

The Mathematica function found the solution:

f(2371) = 33110401974639861466556783753600023154051803888587048939300.




