Solutions to Homework Assignment 1 CS 6104: Algorithmic Number Theory

Problem 1. [Solution courtesy of Nick Loehr] Use the techniques in Chapter 2 to derive an asymptotic estimate for

$$h(x,k) = \sum_{p \le x} p^k,$$

where $k \geq 1$ is an integer. For $k \in \{1, 2, 3, 4\}$ and $x \in \{10, 50, 100, 200\}$, use *Mathematica* to compute h(x, k) precisely. Present these results in a table along with the values of your asymptotic estimates.

Recall Theorem 2.7.1, which states that for continuously differentiable functions q,

$$\sum_{p \le x} g(p) = \int_2^x \frac{g(t) dt}{\log t} + \epsilon(x)g(x) - \int_2^x \epsilon(t)g'(t) dt.$$
 (1)

where $\epsilon(x) = o(x/\log x)$. Fix an integer $k \ge 1$, and set $g(x) = x^k$. Then (1) becomes:

$$h(x,k) = \sum_{p \le x} p^k = \int_2^x \frac{t^k \, dt}{\log t} + \epsilon(x) x^k - \int_2^x k t^{k-1} \epsilon(t) \, dt.$$
 (2)

First, let us estimate the integral $\int_2^x \frac{t^k dt}{\log t}$. We will use Theorem 2.6.1 with $f(x) = x^k/(\log x)$. We have

$$\frac{f'(x)}{f(x)} = \frac{(kx^{k-1}\log x - x^{k-1})/(\log^2 x)}{x^k/(\log x)} = \frac{k\log x - 1}{x\log x} = \frac{k}{x} - \frac{1}{x\log x} \sim \frac{k}{x}.$$

We may take $\mu = k$ in the theorem. Since $k \neq 0$, we obtain

$$\int_{2}^{x} \frac{t^{k} dt}{\log t} \sim \frac{xf(x)}{\mu + 1} = \frac{x^{k+1}}{(k+1)\log x}.$$

Knowing that $\epsilon(x) = o(x/\log x)$, it's obvious that the two error terms $\epsilon(x)x^k$ and $\int_2^x kt^{k-1}\epsilon(t) dt$ are each $o(x^{k+1}/\log x)$. Hence, we have

$$h(x,k) \sim \frac{x^{k+1}}{(k+1)\log x}.$$

The following Mathematica code computes h(x,k) precisely for the given values of x and k:

];
sum]
In[11]:= Table[h[10,k],{k,1,4}]

 $In[12] := Table[h[50,k],{k,1,4}]$

 $In[13] := Table[h[100,k], \{k,1,4\}]$

 $In[14] := Table[h[200,k],{k,1,4}]$

The following code computes approximations for h(x, k) using the formula just derived:

 $n[18] := ah[x_,k_] := N[x^(k+1)/((k+1)*Log[x])]$

In[19]:= Table[ah[10,k],{k,1,4}]

 $In[20] := Table[ah[50,k],{k,1,4}]$

In[21]:= Table[ah[100,k],{k,1,4}]

In[22]:= Table[ah[200,k],{k,1,4}]

The exact results produced by Mathematica are as follows.

x	h(x,1)	h(x,2)	h(x,3)	h(x,4)
10	17	87	503	3123
50	328	10466	385054	15169214
100	1060	65796	4696450	360663864
200	4227	565065	86470593	14185215405

The approximations produced by Mathematica are as follows.

x	h(x,1)	h(x, 2)	h(x,3)	h(x,4)
10	21.7147	144.765	1085.74	8685.89
50	319.528	10650.9	399410	1.59764×10^{7}
100	1085.74	72382.4	5.42868×10^6	4.34294×10^{8}
200	3774.78	503304	7.54957×10^7	1.20793×10^{10}

Problem 2. [Solution courtesy of Nick Loehr] Let R be the ring $\mathbb{Z}/(3)$, and consider the polynomial ring R[X]. Let $f \in R[X]$ be the polynomial

$$f(X) = X^2 + 3X + 2.$$

Finally, let

$$I = \{g(X)f(X)h(X) \mid g, h \in R[X]\}.$$

- **A**. Prove that I is an ideal in R[X].
- **B.** Let T = R[X]/I. How many elements does T have? What are they?
- \mathbf{C} . Give addition and multiplication tables for T.

- **D**. Is T a field? Why or why not?
- **A.** Let $J = \{p(x)f(x) \mid p \in R[x]\}$. We claim that I = J. To see this, take any $p \in R[x]$. Letting g = p and h = 1 in the definition of I shows that $J \subset I$. Similarly, for any $g, h \in R[x]$, note that g(x)f(x)h(x) = (g(x)h(x))f(x). Taking p(x) = g(x)h(x) shows that $I \subset J$.

The proof that I is an ideal is now identical to the proof given in class that J is an ideal. We repeat that proof here for completeness.

Certainly $0 \in J$, so J is non-empty.

Suppose $p_1(x)f(x)$ and $p_2(x)f(x)$ are arbitrary elements in J. Then

$$p_1(x)f(x) + p_2(x)f(x) = (p_1(x) + p_2(x))f(x) \in J,$$

using the distributive law and the fact that $p_1(x) + p_2(x) \in R[x]$. So J is closed under addition.

Similarly, if $p(x)f(x) \in J$ and $q(x) \in R[x]$, then

$$q(x)[p(x)f(x)] = [q(x)p(x)]f(x) \in J,$$

using the associativity of multiplication and the fact that $q(x)p(x) \in R[x]$. So J is closed under multiplication by elements of R[x]. Hence, J = I is an ideal in R[x].

B. The factor ring T has nine elements, namely the equivalence classes

$$\{\overline{0},\overline{1},\overline{2},\overline{x},\overline{x+1},\overline{x+2},\overline{2x},\overline{2x+1},\overline{2x+2}\}.$$

To see that these nine elements are distinct, observe that I consists of all multiples of $f(x) = x^2 + 2$. Nonzero multiples of I will clearly have degree at least 2, since the coefficient ring $\mathbb{Z}/(3)$ has no zero divisors. Thus, the difference of two distinct elements of the form $a_0 + a_1x$ is not in I, since this difference is a nonzero polynomial of degree less than 2.

Next, T does not have any additional elements. For, any polynomial of degree 2 or more is equivalent to one of the polynomials listed above, since we can reduce modulo f to replace x^2 by -2 = 1, x^3 by x, etc.

C. The addition table for T is as follows: (Here, we write 0 for the equivalence class $\overline{0}$, etc.)

+	0	1	2	x	x+1	x+2	2x	2x + 1	2x + 2
0	0	1	2	x	x+1	x+2	2x	2x + 1	2x + 2
1	1	2	0	x+1	x+2	x	2x + 1	2x + 2	2x
2	2	0	1	x+2	x	x+1	2x + 2	2x	2x + 1
x	x	x + 1	x+2	2x	2x + 1	2x + 2	0	1	2
x+1	x+1	x+2	x	2x + 1	2x + 2	2x	1	2	0
x+2	x+2	x	x+1	2x+2	2x	2x + 1	2	0	1
2x	2x	2x + 1	2x+2	0	1	2	x	x+1	x+2
2x + 1	2x + 1	2x + 2	2x	1	2	0	x+1	x+2	x
2x + 2	2x + 2	2x	2x + 1	2	0	1	x+2	x	x+1

This first table is easily computed by noting that 3 = 0 in the coefficient ring.

The multiplication table for T is easily computed if we remember to replace x^2 by 1 whenever it appears in a product. We get:

*	0	1	2	x	x+1	x+2	2x	2x+1	2x+2
0	0	0	0	0	0	0	0	0	0
1	0	1	2	x	x+1	x+2	2x	2x + 1	2x + 2
2	0	2	1	2x	2x+2	2x + 1	x	x+2	x+1
\boldsymbol{x}	0	x	2x	1	x+1	2x + 1	2	x+2	2x + 2
x+1	0	x+1	2x+2	x+1	2x+2	0	2x + 2	0	x+1
x+2	0	x+2	2x + 1	2x + 1	0	x+2	x+2	2x + 1	0
2x	0	2x	x	2	2x + 2	x+2	1	2x + 1	x+1
2x+1	0	2x + 1	x+2	x+2	0	2x + 1	2x + 1	x+2	0
2x+2	0	2x + 2	x+1	2x + 2	x+1	0	x+1	0	2x+2

D. T is not a field since not all nonzero elements have multiplicative inverses. For example, x+1 has no multiplicative inverse, by inspection of the table above.

Problem 3. [Solution courtesy of Jeremy Rotter] Chapter 3, Problem 8.

- **A.** Give pseudocode for your algorithm to solve f(x) = n. Analyze its worst case time complexity.
- **B.** Program your algorithm in *Mathematica* or other symbolic computation system. Include the *Mathematica* code in your solution.
- C. Use your algorithm to determine whether a solution exists to

$$f(x) = 33110401974639861466556783753600023154051803888587048939300,$$

where f(x) is this polynomial

$$14x^{17} + 99x^7 + 3x^2 + 94$$
.

A. The following is pseudocode for an algorithm which will determine whether there exists a positive integer x such that f(x) = n, and if there is, it will return that integer. Otherwise it will return FALSE.

The problem specification did not require a proof on why this works, so I haven't provided one! In a nutshell, however, this algorithm works because when x > 0, $f'(x) \ge 0$. This means that when x > 0, the function is increasing, and hence we can rely on the fact that, if f(a) < n, then f(x) < n for all $0 \le x \le a$. Similarly, if f(a) > n, then f(x) > n for all $x \ge a$. This allows us to use a binary search to find the solution.

DiophantineSolve(input: Diophantine function f, positive integer n)

```
// Set the range of integers in which we will find our answer
rbegin \leftarrow 0
rend \leftarrow n
// Choose our initial guess
index \leftarrow \lfloor \frac{rend + rbegin}{2} \rfloor
val \leftarrow f(index)
// Search until we find an answer or run out of integers
while (rbegin \neq rend) and (val \neq n)
   // If the search range was of length 1, make it length 0
   if (rend - rbegin) = 1
       then rbegin \leftarrow rend
       else if (val > n)
           then rend \leftarrow (index - 1)
           else rbegin \leftarrow (index + 1)
   index \leftarrow \lfloor \frac{rend + rbegin}{2} \rfloor
   val = f(index)
if (val \neq n)
   then return FALSE
   else return index
```

This algorithm, in the worst case, is clearly $O(\log_2 n)$, since all it does is start with a search range of [0, n], and then it uses a binary search to repeatedly half the range until it either finds an x such that f(x) = n or it reduces the search range to a single integer. Everything outside of the while loop in the program will run in constant time. The $O(\log_2 n)$ represents the worst case number of calls to the function f, which I am assuming also runs in a constant amount of time.

B. The following is the *Mathematica* code to solve f(x) = n:

```
rbegin = 0;
    rend = n;
    (* Choose our initial guess *)
    index = Floor[(rend+rbegin)/2];
    val = f[index];
    (* Search until we find an answer or run out of integers *)
    While[(rbegin != rend)&&(val != n),
        (* If the search range was of length 1, make it length 0 *)
        If[(rend-rbegin) == 1, rbegin = rend,
            If[ val > n, rend = index - 1, rbegin = index + 1]
        ];
        index = Floor[(rend+rbegin)/2];
        val = f[index];
    ];
    (* Set -1 as the return value if no answer was found *)
    If [ val != n, index = -1];
    index
1
```

C. Here are the commands I gave to *Mathematica* to find the solution for the given n:

```
(* Here we define f *) f[x_{-}] := 14x^{17} + 99x^{7} + 3x^{2} + 94 (* Now we can solve part C on the homework *) DiophantineSolve[f, 33110401974639861466556783753600023154051803888587048939300]
```

The Mathematica function found the solution:

```
f(2371) = 33110401974639861466556783753600023154051803888587048939300.
```