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Problem and Context
● Ever increasing data at Facebook
● Launch of Facebook Messages
● Other Young Turks at Facebook
● Leaving MySQL and its sharding 
● Migration challeneges
● Problem in words: Unpredictable growth, write 

throughput and latency requirements 
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Problem and Context (contd.)
● The Usual Suspects

● Cassandra
● Other NoSQL

● Other considerations
● Solution: A near realtime Hadoop/HBase that is 

modified from the vanilla versions to provide 
scalability, consistency, availability and a 
compatible data model.
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Key contributions
● Making Hadoop and HBase more real-time
● Adapting Hadoop and HBase to Facebook's 

unique requirements
● Implementation of RealTime HDFS
● Implementation of Production HBase
● Operational Optimizations
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Overview
● Problem and Context
● Facebook stands alone
● (Small) Introduction to Hadoop and HBase
● Enter the Hs
● Realtime HDFS
● Production HBase
● Operational Optimization
● The present future
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Facebook's unique requirements

● Facebook and the Hadoop ecosystem
● Offline and sequential

● Requirement Type 1 – Realtime concurrent read 
access to large stream of realtime data

● Example: Scribe

● Requirement Type 2 -  Dynamically index a rapidly 
growing data set for fast random lookups

● Example: Facebook Messages
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Facebook's unique requirements
● Facebook Messaging:

● Unweildly tables
● High Write Throughput
● Data Migration

● Facebook Insights
● Realtime Analytics
● Aggregators

● Facebook Metrics System
● Quick reads
● Automatic Sharding
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Overview
● Problem and Context
● Facebook stands alone
● (Small) Introduction to Hadoop and HBase(Small) Introduction to Hadoop and HBase
● Enter the Hs
● Realtime HDFS
● Production Hbase
● Operational Optimization
● The present future
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Introduction to Hadoop
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Introduction to HBase
● Hbase: A NoSQL database that utilizes an on-disk 

column storage format.

● Hbase USP: Provides fast key-based access to a 
specific cell or data or a range of cells.

● Based on Google's BigTable but extends it

● Has Row atomicity and read-modify-write consistency

● Simplifies a lot of tasks related to distributed databases.

● Tagline: Random access to web-scale data
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Introduction to Zookeeper
● Zookeeper: A software service for a distributed 

environment that coordinates and configures different 
machines in a centralized way.

● A change is not considered successful until it has been 
written to a quorum

● A leader is elected within the ensemble for conflicts

● In HBase, ZooKeeper coordinates and shares state 
between the Masters and RegionServers. 

● Tagline: Enables highly reliable distributed 
coordination
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HBase + Zookeeper
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Overview
● Problem and Context
● Facebook stands alone
● (Small) Introduction to Hadoop and HBase
● Enter the HsEnter the Hs
● Realtime HDFS
● Production HBase
● Operational Optimization
● The present future
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The Why Hadoop/HBase question
● Scalability
● Range Scans
● Efficient low-latency strong consistency
● Atomic Read-Modify-Write
● Random reads
● Fault Isolation
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The Why Hadoop/HBase question
● High write throughput
● Data model
● High Availability

● Non-requirements
● Tolerance of network partitions
● Individual data centre failure zero downtime
● Federation comfort
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Overview
● Problem and Context
● Facebook stands alone
● (Small) Introduction to Hadoop and HBase
● Enter the Hs
● Realtime HDFSRealtime HDFS
● Production HBase
● Operational Optimization
● The present future
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Realtime HDFS - AvatarNode
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Realtime HDFS - AvatarNode
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Realtime HDFS – AvatarNode view
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Realtime HDFS – Logging

● Enhancements to Transcation logging:
● Conventional HDFS
● Change: Let the StandbyNode always know about 

block ids.
● Avoidance of partial reads between Active and 

Standby node
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Improved block availability

● Challenge: Placement of non-local blocks is not 
optimal; can be on any rack or within any node therein.

● Soution: A new block placement policy which has 
reduced the probabilty of data loss by orders of 
magnitude.

● Define a 'window' of logical racks and logical machines 
around the original block.
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Hadoop performance improvements

● RPC Timeout
● Live free or fail fast

● File Lease recovery
● Local replica awareness
● New tricks:

● HDFS sync
● Concurrent readers
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Overview
● Problem and Context
● Facebook stands alone
● (Small) Introduction to Hadoop and HBase
● Enter the Hs
● Realtime HDFS
● Production HBaseProduction HBase
● Operational Optimization
● The present future
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HBase – ACID compliance

● Requirement: Row-level atomicity and consistency 
of ACID compliance

● RegionServer failure during log write for row 
transactions.

● Consistency of replicas

● Solution: 

● WAL edits ~ Write Ahead Log policy
● Immediate rollback
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HBase – Availability Improvements

● Master Rewrite
● Store transient state in Zookeeper

● Rolling upgrades
● Handled by reassigning of regions

● Distributed Logsplitting
● Outsource to Zookeeper
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Hbase – Performance Improvement

● Compaction Improvement
● put latency dropped from 25 ms to 3 ms!

● Read Optimization – Skipping certain unnecessary 
files for certain queries, reducing I/O

● Using Bloom filters 
● A new special timestamp file selection algorithm

● Ensuring that Regions are local to their data
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Overview
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● (Small) Introduction to Hadoop and HBase
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● Realtime HDFS
● Production Hbase
● Operational OptimizationOperational Optimization
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Operational Optimizations
● Facebook's HBase testing program
● HBase Verify
● HBCK
● Added metrics for long running operations too!
● Manual split instead of automatic
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Operational Optimizations

● Dark Launch
● Dashboard/ODS integration

● Cross-cluster dashboards for higher analysis
● Visualize version differences

● Backups
● Do it using Scribe as an alternate application log
● Piggyback on the date sent for Hive analytics
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Operational Optimizations

● Importing the data
● Challenge: Importing legacy data in HBase from a 

Hadoop job saturates the production network
● Solution: Use Bulk Import with compression

– Enhanced by GZIP of the intermediate map output

● Reducing Network I/O:
● Decreased the periodicity of major compactions
● Certain column families excluded from logging
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The present future
● Apache Hadoop 2.0 was released in 2012
● One addition was YARN

● A powerful cluster resource management
● Added the High Availability feature to NameNode by 

introducing the Hot/Standby NameNode.
● Greater integration with Zookeeper, especially for 

the ZKFC (Implementation of failover in DAFS)
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 Thank you and GG!
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