
Apache Hadoop Goes Realtime at
 Facebook

 ~
 Borthakur, Sarma, Gray, Muthukkaruppan,
Spiegelberg, Kuang, Ranganathan, Molkov,

Menon, Rash, Scmidt and Aiyer

 2

Problem and Context
● Ever increasing data at Facebook
● Launch of Facebook Messages
● Other Young Turks at Facebook
● Leaving MySQL and its sharding
● Migration challeneges
● Problem in words: Unpredictable growth, write

throughput and latency requirements

 3

Problem and Context (contd.)
● The Usual Suspects

● Cassandra
● Other NoSQL

● Other considerations
● Solution: A near realtime Hadoop/HBase that is

modified from the vanilla versions to provide
scalability, consistency, availability and a
compatible data model.

 4

Key contributions
● Making Hadoop and HBase more real-time
● Adapting Hadoop and HBase to Facebook's

unique requirements
● Implementation of RealTime HDFS
● Implementation of Production HBase
● Operational Optimizations

 5

Overview
● Problem and Context
● Facebook stands alone
● (Small) Introduction to Hadoop and HBase
● Enter the Hs
● Realtime HDFS
● Production HBase
● Operational Optimization
● The present future

 6

Facebook's unique requirements

● Facebook and the Hadoop ecosystem
● Offline and sequential

● Requirement Type 1 – Realtime concurrent read
access to large stream of realtime data

● Example: Scribe

● Requirement Type 2 - Dynamically index a rapidly
growing data set for fast random lookups

● Example: Facebook Messages

 7

Facebook's unique requirements
● Facebook Messaging:

● Unweildly tables
● High Write Throughput
● Data Migration

● Facebook Insights
● Realtime Analytics
● Aggregators

● Facebook Metrics System
● Quick reads
● Automatic Sharding

 8

Overview
● Problem and Context
● Facebook stands alone
● (Small) Introduction to Hadoop and HBase(Small) Introduction to Hadoop and HBase
● Enter the Hs
● Realtime HDFS
● Production Hbase
● Operational Optimization
● The present future

 9

Introduction to Hadoop

 10

Introduction to HBase
● Hbase: A NoSQL database that utilizes an on-disk

column storage format.

● Hbase USP: Provides fast key-based access to a
specific cell or data or a range of cells.

● Based on Google's BigTable but extends it

● Has Row atomicity and read-modify-write consistency

● Simplifies a lot of tasks related to distributed databases.

● Tagline: Random access to web-scale data

 11

Introduction to Zookeeper
● Zookeeper: A software service for a distributed

environment that coordinates and configures different
machines in a centralized way.

● A change is not considered successful until it has been
written to a quorum

● A leader is elected within the ensemble for conflicts

● In HBase, ZooKeeper coordinates and shares state
between the Masters and RegionServers.

● Tagline: Enables highly reliable distributed
coordination

 12

HBase + Zookeeper

 13

Overview
● Problem and Context
● Facebook stands alone
● (Small) Introduction to Hadoop and HBase
● Enter the HsEnter the Hs
● Realtime HDFS
● Production HBase
● Operational Optimization
● The present future

 14

The Why Hadoop/HBase question
● Scalability
● Range Scans
● Efficient low-latency strong consistency
● Atomic Read-Modify-Write
● Random reads
● Fault Isolation

 15

The Why Hadoop/HBase question
● High write throughput
● Data model
● High Availability

● Non-requirements
● Tolerance of network partitions
● Individual data centre failure zero downtime
● Federation comfort

 16

Overview
● Problem and Context
● Facebook stands alone
● (Small) Introduction to Hadoop and HBase
● Enter the Hs
● Realtime HDFSRealtime HDFS
● Production HBase
● Operational Optimization
● The present future

 17

Realtime HDFS - AvatarNode

 18

Realtime HDFS - AvatarNode

 19

Realtime HDFS – AvatarNode view

 20

Realtime HDFS – Logging

● Enhancements to Transcation logging:
● Conventional HDFS
● Change: Let the StandbyNode always know about

block ids.
● Avoidance of partial reads between Active and

Standby node

 21

Improved block availability

● Challenge: Placement of non-local blocks is not
optimal; can be on any rack or within any node therein.

● Soution: A new block placement policy which has
reduced the probabilty of data loss by orders of
magnitude.

● Define a 'window' of logical racks and logical machines
around the original block.

 22

Hadoop performance improvements

● RPC Timeout
● Live free or fail fast

● File Lease recovery
● Local replica awareness
● New tricks:

● HDFS sync
● Concurrent readers

 23

Overview
● Problem and Context
● Facebook stands alone
● (Small) Introduction to Hadoop and HBase
● Enter the Hs
● Realtime HDFS
● Production HBaseProduction HBase
● Operational Optimization
● The present future

 24

HBase – ACID compliance

● Requirement: Row-level atomicity and consistency
of ACID compliance

● RegionServer failure during log write for row
transactions.

● Consistency of replicas

● Solution:

● WAL edits ~ Write Ahead Log policy
● Immediate rollback

 25

HBase – Availability Improvements

● Master Rewrite
● Store transient state in Zookeeper

● Rolling upgrades
● Handled by reassigning of regions

● Distributed Logsplitting
● Outsource to Zookeeper

 26

Hbase – Performance Improvement

● Compaction Improvement
● put latency dropped from 25 ms to 3 ms!

● Read Optimization – Skipping certain unnecessary
files for certain queries, reducing I/O

● Using Bloom filters
● A new special timestamp file selection algorithm

● Ensuring that Regions are local to their data

 27

Overview
● Problem and Context
● Facebook stands alone
● (Small) Introduction to Hadoop and HBase
● Enter the Hs
● Realtime HDFS
● Production Hbase
● Operational OptimizationOperational Optimization
● The present future

 28

Operational Optimizations
● Facebook's HBase testing program
● HBase Verify
● HBCK
● Added metrics for long running operations too!
● Manual split instead of automatic

 29

Operational Optimizations

● Dark Launch
● Dashboard/ODS integration

● Cross-cluster dashboards for higher analysis
● Visualize version differences

● Backups
● Do it using Scribe as an alternate application log
● Piggyback on the date sent for Hive analytics

 30

Operational Optimizations

● Importing the data
● Challenge: Importing legacy data in HBase from a

Hadoop job saturates the production network
● Solution: Use Bulk Import with compression

– Enhanced by GZIP of the intermediate map output

● Reducing Network I/O:
● Decreased the periodicity of major compactions
● Certain column families excluded from logging

 31

The present future
● Apache Hadoop 2.0 was released in 2012
● One addition was YARN

● A powerful cluster resource management
● Added the High Availability feature to NameNode by

introducing the Hot/Standby NameNode.
● Greater integration with Zookeeper, especially for

the ZKFC (Implementation of failover in DAFS)

 32

 Thank you and GG!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

