
Resource Containers
A new facility for resource management in server systems

G. Banga, P. Druschel, J. C. Mogul

OSDI 1999

Presented by Uday Ananth

Lessons in history..

Web servers have become predominantly

responsible for a users’ perceived computing

performance

These servers must often scale to millions of clients.

A lot of work has been done for improving the

performance of web servers and making them more

scalable.

Service providers want to exert explicit control

over resource consumption policy. (Differentiated

QoS)

2

Clip

http://www.youtube.com/watch?v=mfXeoP4SJ2g&t=10m27s

The blame game..

There are shortcomings in the resource

management abstractions.

Operating systems treat processes as the

unit of resource management.

Web servers use a small set of processes to

handle several activities, making them too

coarse to be the right unit of resource

management.

3

Let’s draw up the terms..

Resource Principals are entities for which

separate resource allocation and accounting

are done.

Protection domains are entities that need

to be isolated from each other.

In most operating systems, processes or

threads are both resource principals as well

as protection domains.

4

The problems..

Protection domain and Resource principal

exist in the same process abstraction.

Applications have little control over the

resources the kernel consumes for them.

The resources utilized by the kernel are

often accounted / utilized inaccurately

(according to the process) resulting in bad

scheduling decisions.

5

The assumptions we make.. (not necessarily wrong..)

Most user space applications are a single

process, (possibly consisting of multiple

threads) and perform a single activity.

Resources consumed by the process are

properly accounted, as the kernel consumes

few resources on behalf of the application.

Therefore, the process is an appropriate

resource principal.

6

The Band-Aids we applied..

Let’s take a look at the previous approaches

we’ve tried.

Process-per Connection

Single-Process Event-Driven Connection

Multi-threaded Server

7

Process-per Connection..

Simple to implement.

We have a master process listening to a

port for new connection requests.

For each new connection a new process is

forked.

There are caveats such as Forking

overhead, context switching overheads,

IPC overheads.

8

Single-Process Event-Driven Connection..

Harder to implement.

Single process runs event handlers in the

main loop for each ready connection in the

queue.

Helped avoid IPC and context switches

and hence scaled better.

They weren’t really concurrent unless they

ran on multi-processor systems. (They

could fork into multiple processes)

9

Multi-threaded Server..

Easier to implement compared to event

driven models.

Created threads for each incoming

connection or created multiple threads and

Idle threads listened to incoming

connections.

Threads are scheduled by thread

scheduler.

Avoided context switches and scaled better.

10

What’s happening behind the scenes..

Dynamic pages required multiple

resources and were created in response to

user input.

Multiple processes may have been created

to handle the dynamic request and required

some overhead of IPC.

Kernel handles network processing for

buffers, sockets, etc. Those operations are

separate from server app and charged to

either one or any unlucky process!

11

Survival of the fittest..

Let’s have a look at how we’ve managed to

evolve over the application space and where

we fail by using a separate domains.

A network-intensive application

A multi-process application

Single-process multi-threaded

application

12

A network-intensive application..

A process consisting of multiple threads,

performing a single activity. The process is

the right unit for protection, but it does not

encompass all the resources being

consumed.

Referred to as eager processing and results

in inaccurate accounting.

We are unable to charge an application for

the processing that the kernel does.

13

A multi-process application..

Composed of multiple user space

processes, cooperating, to perform a single

activity.

Resource management is a set of all the

processes rather than of individual

processes.

Eg. Parallel Simulation

14

Single-process multi-threaded application..

There is a single process using multiple

independent threads, one for each

connection.

The correct unit of resource management

is smaller than a process.

Resource management is the set of all

resources used to accomplish a single

independent activity.

15

Lazy Receiver Processing..

Integrates network processing and resource

management.

When a packet arrives, instead of doing all

the protocol processing, LRP does some

minimal processing.

The remainder will be performed by the

process for which the packet was intended.

Brings equivalence between resource

principal process.

16

A quick recap..

Dual functions of a protection domain and

resource principal are not efficient.

The system does not allow applications to

directly control resource consumptions (

e.g. priority) or management.

There may be a requirement from Web

servers to provide some kind of guarantee

to clients (differentiated QoS), making

accurate accounting necessary.

17

A solution..

Containers are an abstract entity that

logically contain all system resources being

used by an app to achieve a particular

independent activity.

Containers can contain resources like CPU

time , Sockets, Control Blocks, Network buffers,

etc.

Containers can also be attached with

attributes to limit resources such as CPU

availability, network QoS, scheduling priorities,

etc.

18

How does it work?

Applications have to identify resource

principals and associate those independent

activities with resource containers.

Resource binding is the relation between

resource / processing domains and the

associated resource principals, thereby,

allowing it to charge for resources within

kernel.

Dynamic resource binding is based on the

activity or purpose that a thread / process is

serving. This allows a thread to be associated

with multiple resource containers.

19

Containers in a multi-threaded server..

The server creates a new container for

each connection handled by a single

thread bound to the container.

Kernel processing is charged to this

container.

The scheduling priority of the associated

thread would decay if the thread

consumes more than it’s fair share of

resources.

20

Containers in an event driver server..

The web server would associate a new

container for each connection. However,

they would all be serviced by a single

thread.

The thread’s binding would be changed

dynamically as it moves across the

connections.

The associated container will be charged

for the processing the thread performs for

them.

21

How do you build it?

There were several modifications to Digital

UNIX 4.0D kernel.

CPU scheduler was modified to treat containers

as resource principals that could obtain a fixed

share of time, or share resources assigned to

its parent along with its siblings.

The TCP/IP subsystem was modified to

implement Lazy Receiver Processing.

The Server software was a single-process,

event-driven derived from thttpd and the

Clients used the S-Client software.

22

Can it control resource utilization?

Demonstration on how resource can isolate

static requests being serviced, from

excessive Dynamic CGI requests.

CGI requests consumed about 2 seconds of

CPU time.

Static requests were serving a 1 KB

document in the cache.

The CGI processes were restricted to 30%

(RC 1) and 10% (RC 2).

23

What about performance?

An extension of the resource constraints was

to measure throughput under the pressure

of many dynamic requests.

Restricting resource usage of dynamic

requests allows the OS to deliver a certain

degree of fairness across containers.

24

How about QoS guarantees?

An experiment tested the effectiveness of

resource containers in the prioritized

handling of clients

A high priority client should see the

guaranteed QoS even as the load imposed by

the low priority clients is increased.

A response time of 1 msec for the high priority

client is chosen.

Works, and a slight degradation is seen when

select() is used (because of scalability

problems in select).

25

Can it overcome the dark side?

Containers help provide a certain amount of

immunity against a DOS attack by SYN

flooding.

A set of malicious clients sent bogus SYN

packets to the server’s HTTP port.

The concurrent throughput to other clients

is measured.

The slight degradation is due to the

interrupt processing of the SYN flood.

26

So..

Containers can be used as an abstraction to

explicitly identify a resource principal.

Containers decouple resource principals

from protection domains.

Containers allow explicit and fine-grained

control over resource consumption at both

user-level and kernel-level.

They can provide accurate resource

accounting enabling web servers to provide

differentiated QoS.

27

What’s the impact?

They are not heavy and more efficiently

than hypervisors as Containers are based on

shared OS resources.

There is considerable implications for

application density as well tuned container

systems, can see four-to-six times as many

server instances compared to traditional

hypervisors.

Can make a huge impacts for enterprise

data centers and application developers.

28

Q&A.. I’m tired.. Leave me alone.. Please..

You may provide feedback via uday@vt.edu..

29

http://o15.officeredir.microsoft.com/r/rlid2013GettingStartedCntrPPT?clid=1033

