
RaceMob: Crowdsourced Data 
Race Detection 

Baris Kasikci, Cristian Zamfir, George 
Candea 

 

Presented By: 

Islam Harb 
2014 



Agenda 

• Motivation 

• Data Race Detection Classes 

• RaceMob  

• Implementation 

• Evaluation 

 

 

1 



Motivation 
(The Problem?) 

• Data races as a problem of the concurrency. 

 

• Data races are represented in 
– Atomicity (e.g. access same memory location at same 

time). 

– Order violation (e.g. bad pointers). 

 

• Difficult to discover. Usually requires 
significant overhead.  

 
2 



Few is Many 

• Although only 5-24% of data races have harmful 
effect(s), their consequences were Catastrophic. 

 

• If I am a top coder, why would I worry? 

– C/C++ standards allow compilers’ optimization that 
might lead to data races. 

 

• Therefore, data race detectors are highly 
recommended. 

3 



Static Data Race Detection 

• Static Detection: Analyze the code without 
execution. (Reasoning) 

• Pros: 

– Offline (No runtime overhead). 

– Fast and Scale to large code bases. 

• Cons: 

– False Positives (unreal data races). 

4 



Dynamic Data Race Detection 

• Dynamic Detection: Monitor memory access 
and synchronization at runtime. 

• Pros: 

– More accurate (very low FPs rates). 

• Cons: 

– Test Cases depended. Miss data races that aren’t 
seen during execution (False Negative) 

–  runtime overhead. 

5 



RaceMob 

• Combines static and dynamic detections to 
obtain both accuracy and low runtime 
overhead. 

 

• RaceMob is a three-phased detector. 
– First, static detection phase (potential races with few false 

negatives). 

– Dynamic phase. 

– Crowdsources the validation phase to users machines. 

 

 6 



Static RaceMob [Phase I] 

• The static phase of the RaceMob is done via the RELAY. 
 

• RELAY is a “lock-set” data race detector. 
 

• Data race is flagged when: 
– At least two accesses to memory locations that are the same or may 

alias.  
– One of the accesses is write. 
– The accesses are not guarded by at least one common lock. 

 

• Based  on RELAY report, RaceMob instruments all 
suspected memory access and synchronization operations. 

7 



Dynamic RaceMob [Phase 2] 

• The Dynamic phase of the RaceMob. 

 

• The hive instructs and distributes the validation 
task through the users sites. 

 

• Dynamic phase itself is consisted of there phases: 
1. DCI: Dynamic Context Inference [Always ON]. 

2. On-Demand Data Race Detection [ON/OFF]. 

3. Schedule Steering [ON/OFF]. 

 
8 



DCI: Dynamic Context Inference 

• Looks for concrete instances at runtime at the users machines. 

 

• The concrete instances should validate the candidate data race and 
confirm on whether the racing accesses are made by two different 
threads. 

 

• DCI, keeps track of addresses of potential racing accesses and the 
Thread’s ID. 

 

• Negligible  runtime overhead (0.01%), there feasible to be always 
ON. 

9 



On-Demand Data Race Detection 

• Starts tracking the happens-before relationships once 
first potential racing access is made. 

• Stops tracking: 
– “happens-before” occur between first accessing thread and all other 

threads. [No Race] 

– Second racing access occur before such “happens-before”. [True Race] 

 

10 



Schedule Steering 

• Hive instructs one of the orders (“primary” or “alternative”) to 
be validated. 
 

• RaceMob may pause the accessing thread with “wait” 
operation to enforce the intended order. 

 

11 



Crwodsourcing Overview [Phase 3] 

• Crowdsourcing the validation. 

12 



RaceMob: Reaching Verdict 

• True Race is definite. 
– Should get a proof from any of the user-sites! 
 

• Likely False Positive is probablisitic. 
– The more “No Race” & “Timeout” reports, the more probability that it 

is False Positive.  

 

14 



Implementation 

• 4,147 C++ Lines of Code. 

 

• 2, 850 Python – Hive and user-side daemon. 

 

• Used C++11 weak atomic store/load 
operations. 

 

• Hive is based on LLVM 

15 



Empty Loop Optimization 

• Empty loop bodies caught and suspected as a 
data race candidate:  While(notDone){} 

– Not instrumented. 

– Reported directly to the developer by the hive. 

– Never reach to the user-sites for further 
validation. 

– Otherwise, excessive overhead encounters.   

16 



Evaluation 

• Does it work on Real Code (Real Applications)? 

• Efficient? 

• RaceMob vs. state-of-the-art? 

• Scale with No. of threads? 

17 



Test Environment 

• Small scale real deployment on Authors laptops. 
– Thinkpad Laptops, Intel 2620M Processors, 8 GB RAM, Ubuntu 

Linux 12.04. 

• 1, 754 simulated users sites. 

• Test Machines: 
– 48-core AMD Opteron 6176 (2.3 GHZ), 512 GB RAM, OS: Ubuntu 

Linux 11.04 [Simulated Users] 

– Two 8-core Intel Xeon E5405, 20 GB RAM, OS: Ubuntu 11.10 
[Hive + Simulated Users] 

 

18 



Applications 

• SQLite 

• Bzip2 

• Memcached 

• Ocean 

• Fmm 

• Barnes 

• Apache 

• Others 
 

19 



Evaluation 

• ~13% (106) True Race. [don’t forget: Few is Many!] 

• 77% are Likely FP 

• No False Negative. 

20 



Overall Overhead 

• Less runtime overhead. 

• Static Stage is Offline ~3 minutes for all programs, 
except for Apache and SQLite ~ less than 1 hour. 

 

 

 

21 



Instrumentation vs. Validation 

• Overhead = Instrumentation + Validation 

-Instrumentation 
overhead is negligible 
with respect to the 
Validation overhead 
 

-DCI is negligible ~0.1% 
 

- Dynamic Data Race is 
the black portion. [Lion 
Share] 

22 



Comparison State-of-the-Art 

• RaceMob, RELAY and TSAN 

 

• RaceMob detected 4 extra True Races than TSAN 

 

23 



Comparative Overhead 

 

24 



Schedule Steering is Significant 

• RaceMob’s Schedule Steering plays very 
important role. 
 

• SQLite & Pbzip2: 
– When NOT instrumented – 10,000 executions but no “hang”. 
– When instrumented (SS is ON) – 3 hangs in 176 executions.  

 

• Pbzip2: 
– When NOT instrumented – 10,000 executions but no “crash”. 
– When instrumented (SS is ON) – 4 crashes in 130 executions.  

 

25 



Concurrency Testing Tools 

26 



Concurrency Testing Tools(continued) 

27 



Big Size Problems 

• How this affect on scalability? 

 
– 10 MB file – concurrent requests [Apache & Knot] 

 

– Insert, modify & remove 5,000 items from database & object 
cache [SQLite, Memcached] 

 

– Similarly, enlarge problem size in Ocean, Pbzip2 and Barnes. 

 

28 



Application Threads Scalability  

• Scalability Experiment: 
– Varied threads No. from 2-32. 

– RaceMob runs on 8-core machine. 

29 



 

30 

Thanks! 
Any Questions? 


