
Parrot: A Practical Runtime for

Deterministic, Stable, and

Reliable threads
HEMING CUI, YI-HONG LIN, HAO LI, XINAN XU, JUNFENG YANG,

JIRI SIMSA, BEN BLUM, GARTH A. GIBSON, AND RANDAL E. BRYANT.

Presented by Ramachandra Pai

Outline

 Motivation

 Traditional and deterministic multithreading models

 What is stable multithreading models?

 PARROT: A Practical StableMT system

 How to use PARROT?

 Architecture

 Performance

 Evaluation

2

The one core era: Good times 3

Multiprocessor era

Parallelism gives improved performance but at cost of

introducing complexity

 Deadlocks

 Race conditions

 Multiple threads accessing CS

 Non-determinism

4

Motivation

 Reliable parallelism is considered “something of a black art”

because they are so hard to get right!

5

Traditional multithreading

 Many to Many mapping

 Hard to find concurrency bugs even if the buggy schedule is

reproduced

6

How to reduce the order of

threads?

 Deterministic Multithreading

 Examples: Dthreads, Peregrine

7

Is non-determinism the real culprit

for all the problems?

 Same input + same program -> same output.

 But what if the program changes slightly?

 We need stability for more reliable code. Hence we move to Stable

multithreading models.

8

What is stable multithreading

models?

 Reduces the number of schedules for all inputs

 Does so at the cost of performance.

9

PARROT: A StableMT model

 Reduction in schedules

 Round robin scheduling.

 How do we get performance?

 Soft barriers: “parallel scheduling of chosen computations”

 Performance critical sections: “Ignore determinism”

 Integrated with DBUG

10

Performance hints

 Soft Barriers:

 Encourages scheduler to co-schedule a group of threads

 Scheduler may ignore it if it affects correctness

void soba_init(int groupsize, void *key, int timeout);

void soba_wait(void *key);

 Performance Critical section:

 Removes the round robin scheduling

 Allows OS to schedule this part of code.

 Introduces non-determinism.

11

Example: 12

Example: total order of events 13

How to use PARROT? 14

Total order of events 15

What is DBUG?

 Model checking model : checks all the states of a system

 Mutually beneficial to both systems

 Parrot Reduces the number of schedules. Hence reducing the checking

sample space.

 DBUG helps check schedules that matter to Parrot and developers.

16

Architecture:

 Deterministic Scheduler

 Performance hints

 Wrapper functions for pthread

 Network

 Timeout

17

How does parrot perform in the real

world?

 55 Real world programs

 BerkleyDB, database Library

 OpenLDAP, server with Lightweight directory Access protocol

 Mplayer, video encoder/decoder and player

 Pbzip2, a parallel compression utility etc.

 53 programs used in benchmarks

 15 program in PARSEC

 14 in phoenix etc.

18

Performance charts 19

Effects of Soft barriers and

Performance critical sections

 Reduction of overhead from 510% to 11.9%

20

Evaluation

 Easy to use

 Performance takes a hit, and sometimes its too bad.

 Better than its predecessors in terms of stability and performance.

e.g.: Dthreads, Peregrine

 Deterministic

 Does not solve data races

 Easily deployable

 Replay Debugging

21

Thank you. Any Questions? 22

