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The one core era: Good times 3



Multiprocessor era

Parallelism gives improved performance but at cost of 

introducing complexity

 Deadlocks 

 Race conditions

 Multiple threads accessing CS

 Non-determinism 
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Motivation

 Reliable parallelism is considered “something of a black art” 

because they are so hard to get right!
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Traditional multithreading

 Many to Many mapping

 Hard to find concurrency bugs even if the buggy schedule is 

reproduced
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How to reduce the order of 

threads? 

 Deterministic Multithreading

 Examples: Dthreads, Peregrine  
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Is non-determinism the real culprit 

for all the problems?

 Same input + same program -> same output.

 But what if the program changes slightly?

 We need stability for more reliable code. Hence we move to Stable 

multithreading models. 
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What is stable multithreading 

models?

 Reduces the number of schedules for all inputs

 Does so at the cost of performance.
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PARROT: A StableMT model

 Reduction in schedules 

 Round robin scheduling.

 How do we get performance? 

 Soft barriers: “parallel scheduling of chosen computations”  

 Performance critical sections: “Ignore determinism”

 Integrated with DBUG
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Performance hints 

 Soft Barriers: 

 Encourages scheduler to co-schedule a group of threads

 Scheduler may ignore it if it affects correctness

void soba_init(int groupsize, void *key, int timeout); 

void soba_wait(void *key);

 Performance Critical section:

 Removes the round robin scheduling

 Allows OS to schedule this part of code.

 Introduces non-determinism.
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Example: 12



Example: total order of events 13



How to use PARROT? 14



Total order of events 15



What is DBUG?

 Model checking model : checks all the states of a system

 Mutually beneficial to both systems

 Parrot Reduces the number of schedules. Hence reducing the checking 

sample space.

 DBUG helps check schedules that matter to Parrot and developers.
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Architecture:

 Deterministic Scheduler

 Performance hints 

 Wrapper functions for pthread

 Network

 Timeout
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How does parrot perform in the real 

world?

 55 Real world programs

 BerkleyDB, database Library

 OpenLDAP, server with Lightweight directory Access protocol

 Mplayer, video encoder/decoder and player

 Pbzip2, a parallel compression utility etc.

 53 programs used in benchmarks

 15 program in PARSEC

 14 in phoenix etc.
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Performance charts 19



Effects of Soft barriers and 

Performance critical sections

 Reduction of overhead from 510% to 11.9%
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Evaluation

 Easy to use

 Performance takes a hit, and sometimes its too bad.

 Better than its predecessors in terms of stability and performance. 

e.g.: Dthreads, Peregrine

 Deterministic

 Does not solve data races

 Easily deployable

 Replay Debugging  
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Thank you. Any Questions? 22


