
MapReduce: Simplified 
Data Processing on

Large Clusters
J. Dean, S. Ghemawat

Google, Inc

Presented by: Luna Xu



MapReduce -- Key Contribution

● A programming model for processing large 
data sets
○ Map and reduce operations on key/value pairs

● An interface addresses details:
○ Parallelization
○ Fault-tolerance
○ Data distribution
○ Load balancing

● An implementation of the interface
○ Achieve high performance on large clusters of 

commodity PCs



Overview

● Programming Model
● Execution Overview
● Fault Tolerance
● Locality
● Improvements
● Evaluation
● Hadoop



Overview

● Programming Model
● Execution Overview
● Fault Tolerance
● Locality
● Improvements
● Evaluation
● Hadoop



Programming Model



Word Count



Word Count (cont.)

map(String key, String 
value):

// key: document name

// value: document

contents

for each word w in 
value:

EmitIntermediate(w, 
"1");

reduce(String key, 
Iterator values):

// key: a word

// values: a list of

counts

int result = 0;

for each v in values:

result += ParseInt(v);

Emit(AsString
(result));



Examples

● Word count
● Distributed Sort
● Page rank
● Indexing
● K-means clustering
● Bayesian classification
● ….



Overview

● Programming Model
● Execution Overview (Parallelization)
● Fault Tolerance
● Locality
● Improvements
● Evaluation
● Hadoop



Framework

M: no. of mappers R: no. of reducers



Execution Flow



Overview

● Programming Model
● Execution Overview
● Fault Tolerance
● Locality
● Improvements
● Evaluation
● Hadoop



Worker Failure

● Define: heartbeat, timeout
● Handle:

○ Map tasks/in-progress reduce tasks reset to idle for 
re-scheduling

○ Map tasks are re-executed
○ Notifications are sent to all reduce tasks to redirect 

the file location

Flexible and Resilient to large-scale worker 
failures.



Master Failure

● Checkpointing of the maintained data 
structures

● Restart from the checkpointed state
● Abort whole computation

In Hadoop:
● Master (JobTracker) high availability 

configuration along with Zookeeper



Overview

● Programming Model
● Execution Overview
● Fault Tolerance
● Locality (Data Distribution)
● Improvements
● Evaluation
● Hadoop



Locality

● Bring codes to where data locates
● Avoid network traffic
● Optimal when M is chosen by the size of a 

data chunk



Overview

● Programming Model
● Execution Overview
● Fault Tolerance
● Locality (Data Distribution)
● Improvements
● Evaluation
● Hadoop



Backup Tasks

● Problem: “straggler” tasks lengthens the total 
job time

● Solution: master schedules backup 
executions of the remaining in progress 
tasks



Skipping Bad Records

● Problem: Bugs in user code that cause 
functions to crash deterministically on certain 
records

● Solution: If more than one failure is seen by 
master, it skips the record in the next re-
execution



Combiner Function

● Problem: mapper generates the same 
intermediate key when reducers are 
commutative and associative, same data will 
be sent multiple times through network

● Solution: user can specify Combiner function 
to merge data inside a mapper before sent



Overview

● Programming Model
● Execution Overview
● Fault Tolerance
● Locality (Data Distribution)
● Improvements
● Evaluation
● Hadoop



Experiment Settings

● Applications:
○ Grep on one terabyte of data

■ Chunk size = 64MB; M=15,000; R=1
○ Sort on one terabyte of data

■ Chunk size = 64MB; M=15,000; R=4,000
● Cluster:

○ 1800 machines: 2GHz Intel Xeon, 4GB memory, two 
160GB IDE disks, 1 gigabit Ethernet link



Grep



Sort



Experience in Google



Experience in Google



Experience in Google



Overview

● Programming Model
● Execution Overview
● Fault Tolerance
● Locality (Data Distribution)
● Improvements
● Evaluation
● Hadoop



What is Hadoop

● Inspired by Google File System (GFS) and 
MapReduce

● Scale up from single servers to thousands of 
machines

● Widely deployed in real world systems
● Apache project -- Open source
● JAVA
● Yahoo!



Popular Framework



Hadoop Components

● Hadoop Distributed File System (HDFS)
○ Single namespace for entire cluster
○ Almost same as GFS
○ 3 default replicas

● Hadoop MapReduce



Big Picture



Hadoop MapReduce



HDFS



Hadoop Ecosystem

● Ambari™
● Avro™
● Cassandra™
● Chukwa™
● HBase™
● Hive™

● Mahout™
● Pig™
● Spark™
● Tez™
● ZooKeeper™

http://incubator.apache.org/ambari/
http://incubator.apache.org/ambari/
http://avro.apache.org/
http://avro.apache.org/
http://cassandra.apache.org/
http://cassandra.apache.org/
http://incubator.apache.org/chukwa/
http://incubator.apache.org/chukwa/
http://hbase.apache.org/
http://hbase.apache.org/
http://hive.apache.org/
http://hive.apache.org/
http://mahout.apache.org/
http://mahout.apache.org/
http://pig.apache.org/
http://pig.apache.org/
http://spark.incubator.apache.org/
http://spark.incubator.apache.org/
http://tez.incubator.apache.org/
http://tez.incubator.apache.org/
http://zookeeper.apache.org/
http://zookeeper.apache.org/


Thank You
Q & A



References

● Hadoop: http://hadoop.apache.org/
● Storm: http://hortonworks.

com/hadoop/storm/
● Google Data Flow: http:

//googlecloudplatform.blogspot.
com/2014/06/sneak-peek-google-cloud-
dataflow-a-cloud-native-data-processing-
service.html

http://hadoop.apache.org/
http://hortonworks.com/hadoop/storm/
http://hortonworks.com/hadoop/storm/
http://hortonworks.com/hadoop/storm/
http://googlecloudplatform.blogspot.com/2014/06/sneak-peek-google-cloud-dataflow-a-cloud-native-data-processing-service.html
http://googlecloudplatform.blogspot.com/2014/06/sneak-peek-google-cloud-dataflow-a-cloud-native-data-processing-service.html
http://googlecloudplatform.blogspot.com/2014/06/sneak-peek-google-cloud-dataflow-a-cloud-native-data-processing-service.html
http://googlecloudplatform.blogspot.com/2014/06/sneak-peek-google-cloud-dataflow-a-cloud-native-data-processing-service.html
http://googlecloudplatform.blogspot.com/2014/06/sneak-peek-google-cloud-dataflow-a-cloud-native-data-processing-service.html
http://googlecloudplatform.blogspot.com/2014/06/sneak-peek-google-cloud-dataflow-a-cloud-native-data-processing-service.html

