
Log-structured File Systems

By
R V Pavan Kumar

2

Outline

 Unix File System
 Berkley Fast FS
 Improvements
 Evaluation
 Log-Structured FS
 Contributions
 Evaluations

3

Unix File System

● Bell Labs by Ken Thompson

● Block size – 512Bytes

● Linked list of free blocks

● Problem: Poor Performance

– Low throughput – 2-4% of max
bandwidth

– Randomization of data blocks

– Unorganized free list

Superblock

inodes

Data
Blocks

Layout

4

Berkley Fast File System
● UCB CSRG, 1984

● Filesystem organization

– Cylinder group – Set of consecutive
cylinders

– Superblock – replicated for recovery

– Bitmap – free list

– Inodes – static allocation

– Block size – 4098 or 8196 Bytes

● Considers physical disk geometry

Cylinder
Group

5

Improvements
● Optimal Utilization

– Fragments – 2,4 or 8 per block

– Last block can be fragmented

● Free space reserve(10%) – maintain throughput

● Data Locality

– Global layout policies

● Cluster related data
● Spreading out unrelated data

– Local allocation routine

● Always find near-by free blocks
● Make room for locality

6

Evaluation

● 20-40% improvement in bandwidth

● 10x faster reads

● Good Performance on large sequential writes

● Writes are 50% slower than reads

– Overhead of allocating blocks

● Stable performance

7

John K Ousterhout Mendel Rosenblum
University of California

Berkeley

The Design and Implementation of
Log-Structured File System

ACM SOSP 1992

8

Motivation

● CPU speeds Vs

Disk access speeds Vs

Main Memory

● Greater Main Memory - Absorbs most reads

● Disk traffic dominated by writes

● Problems with existing FS

– Poor efficiency of small-file access

– Spread of information

– Synchronous metadata writes

9

Overview

● Basic Idea: Asynchronous writes of large
sequential data

● Write data includes all file system information

● Maximum utilization of disk bandwidth

● Key challenges

– Retrieve information

– Maintaining free space to write

10

File Access

● File has a Inode

● Inode
– File attributes

– 10 Data Blocks

– Indirect blocks

– No fixed location

● Inode Map – written to the log as blocks

● Fixed checkpoint region will have all inode
map locations

11

Log

In
od
e

In
od
e

In
od
e

Da
ta
 b
lo
ck

Da
ta
 b
lo
ck

Da
ta
 b
lo
ck

Di
re
ct
or
y

In
od
e
Ma
p

Log
In
od
e

In
od
e

In
od
e

Da
ta
 b
lo
ck

Da
ta
 b
lo
ck

Da
ta
 b
lo
ck

Di
re
ct
or
y

In
od
e
Ma
p

f1 f2

f2 f1

12

Free space management

● Fragmented free space due to overwrite and
deletion

● Threading new data through free blocks

– Further increases fragmentation

● Copying live data into compacted form

– Complete lock of file system

– Unnecessary movement of long lived files

13

Segments

● Combination of threading and copying

● Data written to a segment as log

● Segment cleaning: Copy live data out of segment

● Skip segments filled with long lived live data.

● Segment size – 512KB or 1MB

Segments

14

Segment Cleaning
● Identify live blocks

● Update File inode

● Segment summary block solves these problems

– Per block file uid and block number

– Partial writes will result in multiple summary
blocks

– Little overhead during writing

– Useful for crash recovery and cleaning

● File UID = version number + inode number

15

Segment cleaning policies

● When should it execute ?

– Number of segments < threshold value1

● How many segments it should clean ?

– Number of segments > threshold value2

● Which segments it should clean ?

– More fragmented – not best

● How should live blocks be grouped ?

– Locality based

– Age based

16

Policy Selection

● Write cost: average time disk is busy per byte
of new data written

● Write cost =

● U: utilization of the segment

totalbytes read∧written
newdata written

=
2

1−u

0⩽u<1

17

Simulation
● Fixed number of 4KB files

● Overwrite a pseudo-random file selected by

– Uniform

● all file are equal
● No re-ordering while writing

– Hot-and-cold

● Hot group: 10% files, 90% selected
● Cold group: 90% files, 10% selected
● Order based on age

● Greedy policy - least utilized segments to clean

18

Simulation Results

● LSF Uniform - lower write cost

● LSF Hot-and-Cold was performing worse even under the
consideration of locality

● Space in Hot and cold segments must be valued
differently

19

LFS Cost-Benefit
● The value of a segment is based on its stability

● Assumption: Older data will remain unchanged

● High

● Segment age = latest modified time among all
segment blocks

benifit
cost

=
free space generated∗age of data

cost
=

(1−u)∗age
1+u

20

● Bimodal distribution of
segments

● Cold segments at u=75%

● Hot segments at u=15%

● 50% reduction in write cost
compared to greedy

● Segment usage table

– No of live bytes per
segment

– Most recent modified
time

Results

21

Crash Recovery
● Check points

– Write out all modified information

– Update fixed checkpoint region

● Current time
● Pointer to last segment written

– Two checkpoint regions

– Periodic intervals (30s), unmount and shutdown

● Roll-forward

– Scan the log from last written segment

– Update directories, inodes, inode map and segment usage blocks

– Updates the checkpoint region

● Directory operation logs - consistency between directory entries and inodes

– Operation code(create, link, rename, unlink)

– I-number of directory and position within it

– Name and I-number

– New reference count

22

Micro-benchmarks
● Sun 4/260

– 16.67MHz

– 32MB

– 300MB, 1.3MB/s, 17.5ms

● Compared LFS against Unix FFS

● Block size – FFS 8KB, UFS
4KB/1MB(segment)

● 10000, 1KB files

– create –> read –> delete

● LFS kept disk 17% busy

● FFS kept disk 85% busy

23

Large-file performance
● Benchmark

– Write sequential, 100MB

– Read sequential

– Write randomly, 100MB

– Read randomly, 100MB

– Read sequential

● LFS has best write performance
in all cases

● LFS sequential reading after
writing randomly is poor

● LFS – temporal locality

● FFS – logical locality

24

Cleaning Overhead

25

Later work

“An implementation of Log-structured filesystem for Unix”-
Margo Seltzer,Keith Bostic,Marshal Kirk McKusick,Carl

Staelin – 1993 USENIX

File systems for flash memories and SSD's
where wear-leveling is required.

Examples: YAFFS(Yet Another Flash File System) and
JFFS(Journaling Flash File System)

26

Thank You
Q?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

