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Unix File System

● Bell Labs by Ken Thompson

● Block size – 512Bytes

● Linked list of free blocks

● Problem: Poor Performance

– Low throughput – 2-4% of max 
bandwidth

– Randomization of data blocks

– Unorganized free list

Superblock

inodes

Data
Blocks

Layout
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Berkley Fast File System
● UCB CSRG, 1984

● Filesystem organization

– Cylinder group – Set of consecutive 
cylinders

– Superblock – replicated for recovery

– Bitmap – free list

– Inodes – static allocation

– Block size – 4098 or 8196 Bytes 

● Considers physical disk geometry 

Cylinder
Group
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Improvements
● Optimal Utilization

– Fragments – 2,4 or 8 per block

– Last block can be fragmented

● Free space reserve(10%) – maintain throughput

● Data Locality

– Global layout policies 

● Cluster related data
● Spreading out unrelated data

– Local allocation routine

● Always find near-by free blocks
● Make room for locality
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Evaluation

● 20-40% improvement in bandwidth

● 10x faster reads

● Good Performance on large sequential writes

● Writes are 50% slower than reads

– Overhead of allocating blocks

● Stable performance
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Motivation

● CPU speeds Vs 

Disk access speeds Vs 

Main Memory

● Greater Main Memory - Absorbs most reads

● Disk traffic dominated by writes

● Problems with existing FS

– Poor efficiency of small-file access 

– Spread of information

– Synchronous metadata writes
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Overview

● Basic Idea: Asynchronous writes of large 
sequential data

● Write data includes all file system information

● Maximum utilization of disk bandwidth

● Key challenges

– Retrieve information

– Maintaining free space to write
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File Access

● File has a Inode

● Inode
– File attributes

– 10 Data Blocks

– Indirect blocks

– No fixed location

● Inode Map – written to the log as blocks

● Fixed checkpoint region will have all inode 
map locations
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Free space management

● Fragmented free space due to overwrite and 
deletion

● Threading new data through free blocks

– Further increases fragmentation

● Copying live data into compacted form

– Complete lock of file system

– Unnecessary movement of long lived files
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Segments

● Combination of threading and copying

● Data written to a segment as log

● Segment cleaning: Copy live data out of segment

● Skip segments filled with long lived live data.

● Segment size – 512KB or 1MB

Segments
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Segment Cleaning
● Identify live blocks

● Update File inode

● Segment summary block solves these problems

– Per block file uid and block number

– Partial writes will result in multiple summary 
blocks

– Little overhead during writing

– Useful for crash recovery and cleaning

● File UID = version number + inode number
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Segment cleaning policies

● When should it execute ?

– Number of segments < threshold value1

● How many segments it should clean ?

– Number of segments > threshold value2

● Which segments it should clean ?

– More fragmented – not best

● How should live blocks be grouped ?

– Locality based

– Age based
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Policy Selection

● Write cost: average time disk is busy per byte 
of new data written

● Write cost =

● U: utilization of the segment 

totalbytes read∧written
newdata written

=
2

1−u

0⩽u<1
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Simulation
● Fixed number of 4KB files

● Overwrite a pseudo-random file selected by

– Uniform

● all file are equal
● No re-ordering while writing

– Hot-and-cold

● Hot group: 10% files, 90% selected
● Cold group: 90% files, 10% selected
● Order based on age

● Greedy policy - least utilized segments to clean
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Simulation Results

● LSF Uniform - lower write cost

● LSF Hot-and-Cold was performing worse even under the 
consideration of locality

● Space in Hot and cold segments must be valued 
differently 
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LFS Cost-Benefit
● The value of a segment is based on its stability

● Assumption: Older data will remain unchanged

● High 

● Segment age = latest modified time among all 
segment blocks

benifit
cost

=
free space generated∗age of data

cost
=

(1−u)∗age
1+u
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● Bimodal distribution of 
segments

● Cold segments at u=75%

● Hot segments at u=15%

● 50% reduction in write cost 
compared to greedy

● Segment usage table

– No of live bytes per 
segment

– Most recent modified 
time

Results
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Crash Recovery
● Check points

– Write out all modified information

– Update fixed checkpoint region

● Current time
● Pointer to last segment written

– Two checkpoint regions

– Periodic intervals (30s), unmount and shutdown

● Roll-forward

– Scan the log from last written segment

– Update directories, inodes, inode map and segment usage blocks

– Updates the checkpoint region

● Directory operation logs - consistency between directory entries and inodes

– Operation code(create, link, rename, unlink)

– I-number of directory and position within it

– Name and I-number 

– New reference count
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Micro-benchmarks
● Sun 4/260

– 16.67MHz

– 32MB

– 300MB, 1.3MB/s, 17.5ms

● Compared LFS against Unix FFS

● Block size – FFS 8KB, UFS 
4KB/1MB(segment)

● 10000, 1KB files

– create –> read –> delete

● LFS kept disk 17% busy

● FFS kept disk 85% busy
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Large-file performance
● Benchmark

– Write sequential, 100MB

– Read sequential

– Write randomly, 100MB

– Read randomly, 100MB

– Read sequential

● LFS has best write performance 
in all cases

● LFS sequential reading after 
writing randomly is poor

● LFS – temporal locality

● FFS – logical locality
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Cleaning Overhead
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Later work

“An implementation of Log-structured filesystem for Unix”- 
Margo Seltzer,Keith Bostic,Marshal Kirk McKusick,Carl 

Staelin – 1993 USENIX

File systems for flash memories and SSD's 
where wear-leveling is required.

Examples: YAFFS(Yet Another Flash File System) and 
JFFS(Journaling Flash File System)
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Thank You
Q?
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