
Improving the Reliability of
Commodity Operating Systems

Michael M. Swift, Brian N. Bershad, and Henry
M. Levy

Published 2003

 CS 5204
 John Smiy

2

Problem

 Extensions account for over 70% of Linux
kernel code

 Programmers often less experienced
 Device drivers remain a significant cause of

system failures
 Windows XP - 85% of reported failures
 Linux- 7 times more likely than the rest of the kernel

3

Solution

 Nooks
 Light weight kernel protection domain

 Targets existing extensions
 Recovers extensions quickly
 Recovered automatically from 99% of faults

that caused Linux to crash

4

Architecture: Design Principles

 Design for fault resistance, not fault tolerance
 Malfunctioning driver that does not corrupt kernel

data

 Design for mistakes, not abuse
 Malicious driver that explicily corrupts the system

page table

5

Design Goals

 Isolation
 Kernel isolated from failures in the extension

 Recovery
 Recover from extensions crashing

 Backwards Compatibility
 Applies to existing systems

6

Nooks Isolation Manager (NIM)

7

NIM: Isolation

 Extension executes within its own lightweight
kernel protection domain

 Management of protection-domain
 Creation, manipulation, and maintenance

 Interdomain control transfer
 Extension Procedural Call (XPC)

8

NIM: Interposition

Transparently integrates existing extentions
into the Nook environment

 All control flow occurs through XPC
 All data transfers are managed by an object

tracker

9

NIM: Object Tracker

 Oversees all kernel resources used by
extensions

 Tasks
 Maintains a list of kernel data structures used by

extensions
 Controls all modification to those structures
 Provides object information when an extension fails

 Copies kernel objects into extension domain

10

NIM: Object Tracking

 Oversees all kernel resources used by
extensions

 Tasks
 Maintains a list of kernel data structures used by

extensions
 Controls all modification to those structures
 Provides object information when an extension fails

 Copies kernel objects into extension domain

11

NIM: Recovery

 Detect software fault
 Extension invokes a kernel service improperly

 with invalid arguments
 Extension consumes too many resources

 Either triggers recovery or return with error

 Detect hardware fault
 Processor raises exception
 Always triggers recovery

12

Implementation

 Linux 2.4.18 kernel on Intel x86 architecture

 Linux may be the worst-case for Nooks targets

 Intercept function calls between the extensions
and kernel

13

Wrappers

 Extension wrappers and Kernel wrappers

 Module loaders bind extensions to wrappers
instead of kernel functions

 Performs work in kernel's protection domain

14

XPC and Control Transfer

 nooks_driver_call
 nooks_kernel_call

 Take function pointer, argument list, and a
protection domain

15

XPC and Control Transfer

Save the callers content to stack
Find a stack for the calling domain

Change page tables to target domain
Call the function

16

Kernel Wrappers

 Calls XPC so wrapper can
execute in kernel's domain

 Calls kernel function
directly

17

Extension Wrapper

 Executes wrapper in
kernel's domain

 Performs XPC to tranfer to
function in extension

18

Wrapper Tasks

 Check parameter pointers are valid
 Object tracker and memory manager

 Creates a copy of kernel objects within
extention's protection domain

 Perform XPC into either the kernel or extention
to execute desired function

19

Handling of Kernel Objects in Wrappers

 Linked directly for read only
 Non-performance critical writes to kernel

objects are converted into XPC calls.
 Performance Critical writes

 Shadow copy in extension's domain
 Synchronized before and after XPC's into the

extension

20

Nook Layer Inside Linux OS

21

Wrapper Coding

 Main wrapper function written by hand
 Once per OS

 Automatic generation of wrapper entry code
and skeleton of wapper body

 Based on Linux kernel header files

 Often shared among multiple drivers

22

Wrapper Code Sharing

23

Kernel Object

Kernel data structure accessed through a
pointer

 All kernel objects are recorded by the object
tracker

 Every object that passed through interfaces
between the kernel and supported extensions

24

Object Tracker Tasks

 Records the addresses of all objects in use by
extensions

 An association is made between the kernel
and extension version of objects

 For objects written by extensions,
 Used to pass parameters between protection

domains

25

Recovery

 Triggered through:
 Software Checks
 Processor Exceptions
 Explicit Signals

 Suspends the extension
 Notifies recovery manager

26

Recovery Manager

Goal is to return the system to a clean state
 Disables interupts from devices using the

extension
 Prevents livelock

 Unwind current tasks
 Releases resources in use by the extension
 Starts user-mode recovery agent

27

User-Mode Recovery Agent

 Flexible recovery via extension configuration
files

 Performs extension specific recovery
 Capable of:

 Changing configuration parameters
 Replacing the extension
 Disable recovery if extention fails frequently

28

Releasing Kernel Resources

 Walks through object tracker freeing, releasing,
or unregistering objects no longer used by
devices

 Associates each object type with recovery
function

 Releases object to the kernel
 Removes references from the kernel into the

extension.

29

Known Limitations of Implementation

 Does not provide complete isolation or fault
tolerance

 Extensions run in kernel mode
 Cannot prevent deliberate corruption of system

state

 Recovery is limited to extensions that can be
killed and restarted safely

30

Testing

 Synthetic fault injection rapidly inserts faults in
Linux kernel

 Changes a single instruction in extension code
 Emulates common errors such as:

 Uninitialized local variables
 Bad parameters
 Inverted test conditions

31

Extensions Isolated

 Device Drivers
 Optional Kernel Subsystem (VFAT)
 Application specific kernel extension (kHTTPd)

32

Environment

 All except e1000 tests were ran in VMware
 ”Native” test ran

 Nooks was present but not used

 Each extension ran for 400 trials
 5 random errors were injected during each trial
 The same 400 trials with the same 5 errors

were then run with Nooks enabled.

33

System crashes

 317 system
crashes reduced
to 4 system
crashes

 In these 4
crashes the
system
deadlocked

34

Interupt vs Process Oriented

 Linux treats exceptions in process oriented
code as non-fatal

 Process Oriented
 VFAT and sb

 Interrupt Oriented
 e1000 and pcnet32

 kHTTPd is process oriented but can corrupt
interupt-level data structures

35

Non-Fatal Errors

 Not designed to
detect non-fatal
errors

 Processor
exceptions

36

Extension Reliability

 Extension is unloaded, reloaded, and restarted
 Default

 Directly improved reliaility for network, sb, and
kHTTPd extensions.

37

VFAT Reliability

 VFAT deals with persistent data storage on disk
 90% of cases resulted in disk corruption

 Proposed Solution:
 Synchronize with in memory disk cache before

releasing resources
 Reduced corruption to 10%

38

Manually Injected Bugs

 Inserted a small number of bugs by hand
 Used most common faults

 Removed checks for NULL pointers
 Failure to properaly initialize stack and heap

variables
 Dereferencing a user level pointer
 Freeing resources multiple times

 Nooks recovered from all these failures

39

Performance Testing Environment

 Dell 1.7 GHz Pentium 4 PC
 Linux 2.4.18
 890 MB of RAM
 SoundBlaster 16 soundcard
 Intel Pro /1000 Gigabit Ethernet adapter
 7200 RPM, 41 GB IDE HDD
 Tests ran on the bare machine

40

Performance Results

 All of the drivers had less than a 10% penalty
 kHTTPd was nearly 60%
 The number of XPC proposes a burden on the

TLB

41

Performance Results

 The e1000 driver batches incoming messages
together

 It does not batch out going messages together
 More XPCs

42

Nooks Positives

 Prevented 99% of system crashes
 Less than 10% performance overhead for

drivers
 Directly improved reliability for network drivers,

sb, and VFAT
 Recovers extensions quickly
 Works with existing extensions

43

Nooks Negatives

 Does not provide complete fault tolerance
 Does not protect against malicious extensions
 Too high of an overhead for some extensions

44

Questions

?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

