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Problem

 Extensions account for over 70% of Linux 
kernel code

 Programmers often less experienced
 Device drivers remain a significant cause of 

system failures
 Windows XP - 85% of reported failures
 Linux- 7 times more likely than the rest of the kernel 
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Solution

 Nooks
 Light weight kernel protection domain

 Targets existing extensions
 Recovers extensions quickly
 Recovered automatically from 99% of faults 

that caused Linux to crash
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Architecture: Design Principles

 Design for fault resistance, not fault tolerance
 Malfunctioning driver that does not corrupt kernel 

data

 Design for mistakes, not abuse
 Malicious driver that explicily corrupts the system 

page table
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Design Goals

 Isolation
 Kernel isolated from failures in the extension

 Recovery
 Recover from extensions crashing

 Backwards Compatibility
 Applies to existing systems
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Nooks Isolation Manager (NIM)
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NIM: Isolation

 Extension executes within its own lightweight 
kernel protection domain

 Management of protection-domain
 Creation, manipulation, and maintenance

 Interdomain control transfer
 Extension Procedural Call (XPC)
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NIM: Interposition

Transparently integrates existing extentions 
into  the Nook environment

 All control flow occurs through XPC
 All data transfers are managed by an object 

tracker
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NIM: Object Tracker

 Oversees all kernel resources used by 
extensions

 Tasks
 Maintains a list of kernel data structures used by 

extensions
 Controls all modification to those structures
 Provides object information when an extension fails

 Copies kernel objects into extension domain
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NIM: Recovery

 Detect software fault
 Extension invokes a kernel service improperly 

 with invalid arguments
 Extension consumes too many resources

 Either triggers recovery or return with error

 Detect hardware fault
 Processor raises exception
 Always triggers recovery
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Implementation

 Linux 2.4.18 kernel on Intel x86 architecture

 Linux may be the worst-case for Nooks targets

 Intercept function calls between the extensions 
and kernel



13

Wrappers

 Extension wrappers and Kernel wrappers

 Module loaders bind extensions to wrappers 
instead of kernel functions

 Performs work in kernel's protection domain
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XPC and Control Transfer

 nooks_driver_call
 nooks_kernel_call

 Take function pointer, argument list, and a 
protection domain
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XPC and Control Transfer

Save the callers content to stack
Find a stack for the calling domain

Change page tables to target domain
Call the function
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Kernel Wrappers

 Calls XPC so wrapper can 
execute in kernel's domain

 Calls kernel function 
directly
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Extension Wrapper

 Executes wrapper in 
kernel's domain

 Performs XPC to tranfer to 
function in extension
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Wrapper Tasks

 Check parameter pointers are valid
 Object tracker and memory manager

 Creates a copy of kernel objects within 
extention's protection domain

 Perform XPC into either the kernel or extention 
to execute desired function
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Handling of Kernel Objects in Wrappers

 Linked directly for read only
 Non-performance critical writes to kernel 

objects are converted into XPC calls.
 Performance Critical writes

 Shadow copy in extension's domain
 Synchronized before and after XPC's into the 

extension
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Nook Layer Inside Linux OS
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Wrapper Coding

 Main wrapper function written by hand
 Once per OS

 Automatic generation of wrapper entry code 
and skeleton of wapper body 

 Based on Linux kernel header files

 Often shared among multiple drivers
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Wrapper Code Sharing
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Kernel Object

Kernel data structure accessed through a 
pointer

 All kernel objects are recorded by the object 
tracker

 Every object that passed through interfaces 
between the kernel and supported extensions
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Object Tracker Tasks

 Records the addresses of all objects in use by 
extensions

  An association is made between the kernel 
and extension version of objects

 For objects written by extensions,
 Used to pass parameters between protection 

domains
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Recovery

 Triggered through:
 Software Checks
 Processor Exceptions
 Explicit Signals

 Suspends the extension
 Notifies recovery manager
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Recovery Manager

Goal is to return the system to a clean state
 Disables interupts from devices using the 

extension
 Prevents livelock

 Unwind current tasks
 Releases resources in use by the extension
 Starts user-mode recovery agent
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User-Mode Recovery Agent

 Flexible recovery via extension configuration 
files

 Performs extension specific recovery
 Capable of:

 Changing configuration parameters
 Replacing the extension
 Disable recovery if extention fails frequently
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Releasing Kernel Resources

 Walks through object tracker freeing, releasing, 
or unregistering objects no longer used by 
devices

 Associates each object type with recovery 
function

 Releases object to the kernel
 Removes references from the kernel into the 

extension.
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Known Limitations of Implementation

 Does not provide complete isolation or fault 
tolerance

 Extensions run in kernel mode
 Cannot prevent deliberate corruption of system 

state

 Recovery is limited to extensions that can be 
killed and restarted safely
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Testing

 Synthetic fault injection rapidly inserts faults in 
Linux kernel

 Changes a single instruction in extension code
 Emulates common errors such as:

 Uninitialized local variables
 Bad parameters
 Inverted test conditions
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Extensions Isolated

 Device Drivers
 Optional Kernel Subsystem (VFAT)
 Application specific kernel extension (kHTTPd)



32

Environment

 All except e1000 tests were ran in VMware
 ”Native” test ran

  Nooks was present but not used

 Each extension ran for 400 trials
 5 random errors were injected during each trial
 The same 400 trials with the same 5 errors 

were then run with Nooks enabled.
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System crashes

 317 system 
crashes reduced 
to 4 system 
crashes

 In these 4 
crashes the 
system 
deadlocked
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Interupt vs Process Oriented

 Linux treats exceptions in process oriented 
code as non-fatal 

 Process Oriented
 VFAT and sb

 Interrupt Oriented
 e1000 and pcnet32

 kHTTPd is process oriented but can corrupt 
interupt-level data structures
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Non-Fatal Errors

 Not designed to 
detect non-fatal 
errors

 Processor 
exceptions
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Extension Reliability

 Extension is unloaded, reloaded, and restarted
 Default

 Directly improved reliaility for network, sb, and 
kHTTPd extensions.
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VFAT Reliability

 VFAT deals with persistent data storage on disk
 90% of cases resulted in disk corruption

 Proposed Solution:
 Synchronize with in memory disk cache before 

releasing resources
 Reduced corruption to 10%
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Manually Injected Bugs

 Inserted a small number of bugs by hand
 Used most common faults 

 Removed checks for NULL pointers
 Failure to properaly initialize stack and heap 

variables
 Dereferencing a user level pointer
 Freeing resources multiple times

 Nooks recovered from all these failures 



39

Performance Testing Environment

 Dell 1.7 GHz Pentium 4 PC
 Linux 2.4.18
 890 MB of RAM
 SoundBlaster 16 soundcard
 Intel Pro /1000 Gigabit Ethernet adapter
 7200 RPM, 41 GB IDE HDD
 Tests ran on the bare machine
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Performance Results

 All of the drivers had less than a 10% penalty
 kHTTPd was nearly 60%
 The number of XPC proposes a burden on the 

TLB
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Performance Results

 The e1000 driver batches incoming messages 
together 

 It does not batch out going messages together
 More XPCs



42

Nooks Positives

 Prevented 99% of system crashes
 Less than 10% performance overhead for 

drivers
 Directly improved reliability for network drivers, 

sb, and VFAT
 Recovers extensions quickly
 Works with existing extensions 
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Nooks Negatives

 Does not provide complete fault tolerance
 Does not protect against malicious extensions
 Too high of an overhead for some extensions
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Questions

?
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