
Improving the Reliability of
Commodity Operating Systems

Michael M. Swift, Brian N. Bershad, and Henry
M. Levy

Published 2003

 CS 5204
 John Smiy

2

Problem

 Extensions account for over 70% of Linux
kernel code

 Programmers often less experienced
 Device drivers remain a significant cause of

system failures
 Windows XP - 85% of reported failures
 Linux- 7 times more likely than the rest of the kernel

3

Solution

 Nooks
 Light weight kernel protection domain

 Targets existing extensions
 Recovers extensions quickly
 Recovered automatically from 99% of faults

that caused Linux to crash

4

Architecture: Design Principles

 Design for fault resistance, not fault tolerance
 Malfunctioning driver that does not corrupt kernel

data

 Design for mistakes, not abuse
 Malicious driver that explicily corrupts the system

page table

5

Design Goals

 Isolation
 Kernel isolated from failures in the extension

 Recovery
 Recover from extensions crashing

 Backwards Compatibility
 Applies to existing systems

6

Nooks Isolation Manager (NIM)

7

NIM: Isolation

 Extension executes within its own lightweight
kernel protection domain

 Management of protection-domain
 Creation, manipulation, and maintenance

 Interdomain control transfer
 Extension Procedural Call (XPC)

8

NIM: Interposition

Transparently integrates existing extentions
into the Nook environment

 All control flow occurs through XPC
 All data transfers are managed by an object

tracker

9

NIM: Object Tracker

 Oversees all kernel resources used by
extensions

 Tasks
 Maintains a list of kernel data structures used by

extensions
 Controls all modification to those structures
 Provides object information when an extension fails

 Copies kernel objects into extension domain

10

NIM: Object Tracking

 Oversees all kernel resources used by
extensions

 Tasks
 Maintains a list of kernel data structures used by

extensions
 Controls all modification to those structures
 Provides object information when an extension fails

 Copies kernel objects into extension domain

11

NIM: Recovery

 Detect software fault
 Extension invokes a kernel service improperly

 with invalid arguments
 Extension consumes too many resources

 Either triggers recovery or return with error

 Detect hardware fault
 Processor raises exception
 Always triggers recovery

12

Implementation

 Linux 2.4.18 kernel on Intel x86 architecture

 Linux may be the worst-case for Nooks targets

 Intercept function calls between the extensions
and kernel

13

Wrappers

 Extension wrappers and Kernel wrappers

 Module loaders bind extensions to wrappers
instead of kernel functions

 Performs work in kernel's protection domain

14

XPC and Control Transfer

 nooks_driver_call
 nooks_kernel_call

 Take function pointer, argument list, and a
protection domain

15

XPC and Control Transfer

Save the callers content to stack
Find a stack for the calling domain

Change page tables to target domain
Call the function

16

Kernel Wrappers

 Calls XPC so wrapper can
execute in kernel's domain

 Calls kernel function
directly

17

Extension Wrapper

 Executes wrapper in
kernel's domain

 Performs XPC to tranfer to
function in extension

18

Wrapper Tasks

 Check parameter pointers are valid
 Object tracker and memory manager

 Creates a copy of kernel objects within
extention's protection domain

 Perform XPC into either the kernel or extention
to execute desired function

19

Handling of Kernel Objects in Wrappers

 Linked directly for read only
 Non-performance critical writes to kernel

objects are converted into XPC calls.
 Performance Critical writes

 Shadow copy in extension's domain
 Synchronized before and after XPC's into the

extension

20

Nook Layer Inside Linux OS

21

Wrapper Coding

 Main wrapper function written by hand
 Once per OS

 Automatic generation of wrapper entry code
and skeleton of wapper body

 Based on Linux kernel header files

 Often shared among multiple drivers

22

Wrapper Code Sharing

23

Kernel Object

Kernel data structure accessed through a
pointer

 All kernel objects are recorded by the object
tracker

 Every object that passed through interfaces
between the kernel and supported extensions

24

Object Tracker Tasks

 Records the addresses of all objects in use by
extensions

 An association is made between the kernel
and extension version of objects

 For objects written by extensions,
 Used to pass parameters between protection

domains

25

Recovery

 Triggered through:
 Software Checks
 Processor Exceptions
 Explicit Signals

 Suspends the extension
 Notifies recovery manager

26

Recovery Manager

Goal is to return the system to a clean state
 Disables interupts from devices using the

extension
 Prevents livelock

 Unwind current tasks
 Releases resources in use by the extension
 Starts user-mode recovery agent

27

User-Mode Recovery Agent

 Flexible recovery via extension configuration
files

 Performs extension specific recovery
 Capable of:

 Changing configuration parameters
 Replacing the extension
 Disable recovery if extention fails frequently

28

Releasing Kernel Resources

 Walks through object tracker freeing, releasing,
or unregistering objects no longer used by
devices

 Associates each object type with recovery
function

 Releases object to the kernel
 Removes references from the kernel into the

extension.

29

Known Limitations of Implementation

 Does not provide complete isolation or fault
tolerance

 Extensions run in kernel mode
 Cannot prevent deliberate corruption of system

state

 Recovery is limited to extensions that can be
killed and restarted safely

30

Testing

 Synthetic fault injection rapidly inserts faults in
Linux kernel

 Changes a single instruction in extension code
 Emulates common errors such as:

 Uninitialized local variables
 Bad parameters
 Inverted test conditions

31

Extensions Isolated

 Device Drivers
 Optional Kernel Subsystem (VFAT)
 Application specific kernel extension (kHTTPd)

32

Environment

 All except e1000 tests were ran in VMware
 ”Native” test ran

 Nooks was present but not used

 Each extension ran for 400 trials
 5 random errors were injected during each trial
 The same 400 trials with the same 5 errors

were then run with Nooks enabled.

33

System crashes

 317 system
crashes reduced
to 4 system
crashes

 In these 4
crashes the
system
deadlocked

34

Interupt vs Process Oriented

 Linux treats exceptions in process oriented
code as non-fatal

 Process Oriented
 VFAT and sb

 Interrupt Oriented
 e1000 and pcnet32

 kHTTPd is process oriented but can corrupt
interupt-level data structures

35

Non-Fatal Errors

 Not designed to
detect non-fatal
errors

 Processor
exceptions

36

Extension Reliability

 Extension is unloaded, reloaded, and restarted
 Default

 Directly improved reliaility for network, sb, and
kHTTPd extensions.

37

VFAT Reliability

 VFAT deals with persistent data storage on disk
 90% of cases resulted in disk corruption

 Proposed Solution:
 Synchronize with in memory disk cache before

releasing resources
 Reduced corruption to 10%

38

Manually Injected Bugs

 Inserted a small number of bugs by hand
 Used most common faults

 Removed checks for NULL pointers
 Failure to properaly initialize stack and heap

variables
 Dereferencing a user level pointer
 Freeing resources multiple times

 Nooks recovered from all these failures

39

Performance Testing Environment

 Dell 1.7 GHz Pentium 4 PC
 Linux 2.4.18
 890 MB of RAM
 SoundBlaster 16 soundcard
 Intel Pro /1000 Gigabit Ethernet adapter
 7200 RPM, 41 GB IDE HDD
 Tests ran on the bare machine

40

Performance Results

 All of the drivers had less than a 10% penalty
 kHTTPd was nearly 60%
 The number of XPC proposes a burden on the

TLB

41

Performance Results

 The e1000 driver batches incoming messages
together

 It does not batch out going messages together
 More XPCs

42

Nooks Positives

 Prevented 99% of system crashes
 Less than 10% performance overhead for

drivers
 Directly improved reliability for network drivers,

sb, and VFAT
 Recovers extensions quickly
 Works with existing extensions

43

Nooks Negatives

 Does not provide complete fault tolerance
 Does not protect against malicious extensions
 Too high of an overhead for some extensions

44

Questions

?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

