CS 5204 Operating Systems Fall 2011

Lecture 1: Introduction Ali R. Butt

The essentials

- Meets T Th 5:00-6:15pm McBryde 329
- Office hours
 - By appointment
- Class website

http://courses.cs.vt.edu/~cs5204/fall11-butt/

Prerequisites

- Understanding of undergraduate-level operating systems concepts and principles
- Programming skills especially in C/C++
- Some familiarity with *NIX systems

Force-add:

If you are not officially enrolled

- Information needed: Name, student ID
- Email this info to me ASAP!! butta@cs.vt.edu
 - Use the words "CS5204 force-add request" in the subject field

About this class:

Graduate level operating systems

- Understand advance operating systems concepts
- Prepare for systems research
 - Read and evaluate research papers
 - Learn from experienced researchers and actual systems
- Build actual systems
 - An open-ended term-long project
- Make presentations
 - Discuss published research papers and your own projects

Reading material

- Primary reading is the assigned research papers
 - Look at the reading list on class website
 - What would you like to present?
- Textbooks (primarily for background)
 - Tanenbaum & van Steen:
 Distributed Systems: Principles and Paradigms (2nd Ed.)
 - Silberschatz, Galvin, Gagne:
 Operating Systems Concepts

Course format

- Discussions + lectures
- Two student presentations
 - one for assigned research paper (may increase to 2 depending on class size)
 - one for term project
- Project:

– Term project on unstructured problems

Discussions

- Everybody reads assigned papers before class
- Submit brief evaluation form
 - Proves you've read the paper
 - Enables you to contribute to discussion
- Evaluation form submission deadlines:
 - Paper evaluation: start of class
 - Speaker evaluation: end of class

Late policy

- No late submissions will be accepted
- Instead, you have six wildcards:
 - Six dates on which you can skip evaluations without penalty
 - Need not be announced beforehand
- Contact instructor for exceptions in severe circumstances only

Paper evaluation form

- What problem does the paper attack? How does it relate to and improve upon previous work in its domain?
- What are the key contributions of the paper?
- Briefly describe how the paper's experimental methodology supports the paper's conclusions
- Write down one question you plan to bring up in the discussion

Your presentation

- Present research as if it were your own
 Give background if necessary
- Evaluate research from your perspective — Add insights, criticism, etc.
- Help lead subsequent discussion

Preparing your presentation

- Guidelines for presentations are posted on class website
 - Strongly recommend you read them
- Every student must meet with instructor to discuss slides.
 - Tentative Time:
 - Thursday 1pm for Tuesday presentation
 - Tuesday 1pm for Thursday presentation
 - You must have your slides ready by that time

Speaker evaluation form: Getting feedback on your presentation

- Content
 - Did the speaker extract and emphasize the paper's main contributions?
 - Did the speaker put the presented work in context?
- Form
 - Slides: Were the slides readable and concise?
 - Presentation: Was the presentation understandable and clear?
 - Other comments you wish to provide, if any

Class participation

- Your participation is very important
- Usually proportional to preparation
- Does not mean I will count the number of times you speak in class!!
- That said, lack of participation may lead to a loss of as much as a letter grade

Midterm Exam

- One oral exam
- Tentative midterm date
 Week after October break
- Covers material from lectures and discussion

Overview of Topics

- Concurrency
 - Race detection in multithreads programs
 - Race detection in the kernel
- Threads & Events
 - The principal of Duality
 - Using threads at scale
 - Using events
- Scheduling
 - Proportional share scheduling
 - QoS-aware scheduling

- Kernel Structures
 - Exokernels
 - Flexible system calls
 - Kernel for massive-core machines
- Virtual Machines
 - Supporting VMs in the OS
 - Understanding XEN
 - Memory management in VMs
- File Systems
 - Modern file systems
 - Journaling and failure recovery
 - Distributed storage systems

- Distributed Systems
 - The concept of time
 - MapReduce
 - End-to-end argument
 - Distributed transactions and notifications
 - Highly available key-value store
- Robustness & Reliability
 - Improving reliability of Oss
 - Highly available cluster services

Term project

• Addresses some unstructured problem

- Milestones
 - Project proposal (9/16)
 - Reports via email/meeting every 3 weeks

- Final presentation/demo
 - To teaching staff during or before final's week

Programming project

- Done in teams of 3-4 students (larger if project size warrants)
- Many options:
 - Build small distributed system
 - E.g., small P2P system; distributed web cache
 - Distribute existing system
 - Perform experiments
 - E.g., characterize Linux workloads
 - Modify or improve existing system
 - E.g., add failure report facility to Linux
- ... your own idea

Grading (tentative)

Midterm	2.5
Paper evaluations and class Participation	1.0
Research Paper Presentation	2.0
Term project	3.5
Final presentation	1.0
Total	10

Honor Code

- Will be strictly enforced in this class
- Do not cheat
 - Observe collaboration policy outlined in syllabus
- Do not plagiarize
 - Use proper citations
- Read the policies posted on the website
 - Note reference to "codes of ethics used by professional societies in the United States"
- If in doubt, ask!