
Eraser : A dynamic data race 
detector for multithreaded 

programs 
By Stefan Savage et al. 

Krish 

9/1/2011 

 



MOTIVATION                   .            

Ø  Only parallel programs can benefit from today’s multi-core processors

Ø  Multithreading has become a common(important) programming technique

Ø  Synchronization between threads is a challenge

Ø  Synchronization errors are easy to cause and hard to debug

Ø  DATA RACE

Ø  Tracking errors take weeks and months



Data race : Non-Determinism 

When two concurrent threads 
access a shared variable

1.  at least one is a write and 

2.  the threads use no explicit 
synchronization to prevent 
simultaneous access 

then  the execution will depend on 
interleaving

 



Data race : Non-Determinism 

‘a’-----????? 



Data race : Non-Determinism 

Locks are used to avoid data race; Let’s see a tool that 
detect’s race. 

 



Complexity in Data Race 
Detection 

Ø  Data Race detection is a NP complete problem

Ø  For t threads of n instructions, the number of possible 
orders is about tn*t. 

Ø  A through detection will involve examining all the possible 
order to make sure there exist only one order.

Ø  Practical race detection tools are based on heuristics - so 
that they can detect maximum number of races, with in 
limited computation



Eraser: A Dynamic Race Detector for Multi-
Threaded Programs 

 
Stefan Savage
University of  Washington
Michael Burrows, Greg Nelson, Patrick Sobalvarro
Digital System Research Center
Thomas Anderson
University of  Washington

SOSP’1997
ACM Transactions on Computer Systems, Nov. 1997.
Cited by 876
	  



Objective of the work 

The work presents the theory, implementation and 
experience of a testing tool that detect dynamic data race in 
multi-threaded programs

 
Author's Claims                    . 

Does not identify all races in the program, but for programs 
using lock-based synchronization ensures better results than 
Lamport's (previous) work



Outline 

Ø  Previous Work

Ø  The Lockset algorithm

Ø  Eraser implementation

Ø  Experiences

 



Lamport's Happenes-before 

The happens-before order is a 
partial order on all events of all 
threads in a concurrent execution,

Ø  Single Thread - events are 
ordered by their occurrence. 

Ø  Between threads - events are 
ordered by the synchronization 
objects they access.

 



Happens-Before Fails 



Other Issues 

•Difficult to implement efficiently - need per-thread information 
about ordering to all shared memory locations.

•Highly dependent on scheduler - needs  large number of test 
cases.

 



Eraser's approach 

Eraser uses binary rewriting techniques to monitor 
every shared memory reference and verify that 
consistent locking behavior is observed.

Heuristics – Consistent Locking Behavior  



Eraser's approach 

Eraser uses binary rewriting techniques to monitor 
every shared memory reference and verify that 
consistent locking behavior is observed.

'binary rewriting' – Observe all the Load and Store 
instructions.

'consistent locking behavior' - All instance of a shared 
variable v is locked by same set of locks L(v)

 



Lockset Algorithm 
 

u  v = shared variable	

u  C(v) = candidate locks for v	

u  locks_held(t) = set of locks held by thread t	

u  A lock l is in C(v) if all threads hold l while 
accessing v	


u  A new variable at initialization is supposed 
to have all possible locks in C(v)	




Traversing Lockset Algorithm !"#$%&'()&*+,&-&,'(./0-12&

!"#$"%& '#()*+,-'. /012

!"#$%$&'

%$()*+
*),-)./01+

2345678.9+

*),-)*):).+

8$2345678.9+

234567809+

*),-)*):).+

8$234567809+

;<

;78.<

;<

;780<

;<

;78.=)780<

;78.<

34

>2%?@)A)B)00



Increasing the comfort zone 
 

Initialization -  Initialization can be 
done with out holding a lock.

Read-shared data - Multiple reads safely 
accessed without locks.

Read-write locks - Multiple readers, but 
allow only a single writer.

 



Initialization and Read-Sharing 

 
Ø  A variable is considered initialized when it is 

accessed by second thread

Ø  Simultaneous reads of shared variable are not races

Ø  Report races only after an initialized variable 
become write shared

 



Per-Location State 



Extending Lockset Algorithm 

●  Read / Write locking modes

●  Locks held in read mode are removed from C(v) when a write occur

●  On each read of v by thread t,	

●  set C(v):= C(v)∩locks_held(t); 	

●  if C(v)= { }, then issue a warning.	


●  On each write of v by thread t,	

●  set C(v):= C(v)∩write_locks_held(t) ; 	

●  if C(v)= { }, then issue a warning.	




Traversing Lockset Algorithm 
!"#$%&'()'*'&(+,*-./&

!"#$"%& '#()*+,-'. /012 34%4-012

!"#$%&
%$'($)*+,&

-./0123)4&

%$'($%$5$)&

3"-./0123)4&

-./0123+4&

%$'($%$5$)&

3"-./0123+4&

67

623)7

67

623+7

67

623)8$23+7

623)7

01

9!:;!"

<=/-3>!%?

@AB:?C
@AB:?CDE.C!F!?C

G)

G+

G)
HB/?$C?#?/#?C
/.::?/#-I

@-!C?$)+$J$++



Implementation 



Eraser's binary modification involves 

1.  Calls to storage allocator initializes C(v)

2.  Each load and store updates C(v)

3.  Each acquire or release call updates 
locks_held(t)

 
 



Implementation 

Data Structure,

1.  Maintains hash table of sets of locks.

2.  Represents each set of locks with an index.

3.  Every shared memory location has shadow memory 
containing lockset index and state.

4.  Shadow memory is located by adding offset to shared 
memory location address.

 



Implementation 



False Positives 

Ø  Memory reuse

Caused by memory reset, with out resetting the shadow memory.

Ø  Private locks

When Locks that are not part of standard pthread interface are used. 

Ø  Benign races

True Data race that did not affect the execution of the program.



Annotations to Avoid False 
Positives 

1.  For memory reuse
1.  EraserReuse(address, size)

2.  For private locks
1.  EraserReadLock(lock)

2.  EraserReadUnlock(lock)

3.  EraserWriteLock(lock)

4.  EraserWriteUnlock(lock)



3.  For benign races
1.  EraserIgnoreOn()

2.  EraserIgnoreOff()



Experience 

1.  AltaVista
1.  Mhttpd http server  - 5,000 lines of C source code, 100 distinct locks, 

9 annotations.
2.  Ni2 indexing engine - 20,000 lines of C source code, 900 distinct 

locks, 10 annotations.

2.  Vesta Cache Server - 30,000 lines of C++ source code, 10 threads, 
26 distinct locks, 10 annotations.

3.  Petal - distributed disk server - 30,000 lines of C++ source code, 64 
threads

4.  Undergrad coursework – 100 multi threaded programs



Experience 

Ø  Deliberately introduced race conditions were detected.

Ø  Other data races were also detected.

Ø  False alarms were raised, but use of annotations resolved 
sizable number of them.



Experience Overall races detected

Program Serious
races

Minor
races

Benign
races

AltaVista ! !
Vesta ! !
Petal !
Undergrad
assignments

!



Performance 

Ø  NP-Complete – Computationally hard problem.

Ø  Implementing Eraser slows down the application 
by a factor of 10 to 30

Ø  Overhead of making a procedure call at every load 
and store instruction

Ø  Performance was never a major goal





RECAP :Objective of the 
work 

The work presents the theory, implementation and 
experience of a testing tool that detect dynamic data 
race in multi-threaded programs

 



Conclusion 
Ø  Uses the locking principles as a heuristics to identify data 

races

Ø  Successful implemention identifies potential races in 
enterprise software

Ø  Implementing Eraser slows down the application by a 
factor of 10 to 30

Ø  Diverse case study was given to support the tool



Let’s Discuss 


