
1

Events Can Make Sense

Maxwell Krohn (MIT CSAIL)

Eddie Kohler (UCLA)

M. Frans Kaashoek (MIT CSAIL)

 Presented by Nabeel

2

Agenda

 Event Vs Threads

 Tame Abstraction

 Implementation

 Methodology

 Limitation

 Performance

3

Events

 Uses event loop and event handlers

 Advantages

 More expressive

 Uses less memory

 Easily portable

 Disadvantages

 Difficult to maintain and debug

 Manual memory management

 Stack ripping

4

Threads

 Uses different execution contexts for concurrency

 Advantages

 Standard control flow

 Automatically managed local variables

 Easy to maintain

 Disadvantages

 Synchronization bottleneck

 Consumes memory

 Context switch overhead

5

Challenge

 A combined model

1. the flexibility and performance of events

2. the programmability of threads

T A M E

6

TAME

 System for managing concurrency in network applications

 API for event based programming

 No stack ripping

 Automatic memory management

 Standard control flow

7

TAME

8

Tame Abstractions

 Events

- future occurence

 Wait Points

 - blocking point

 Rendezvous

 - flexible wait point

 Safe local variables

 - preserved across wait points

9

Events

 Represents the future occurence

 Event triggered via it's trigger method

 Terminology

 Event object

 Trigger slots

 Trigger values

10

Event Primitive

 To create a new event

event<T*> = make_event(T &)

 Trigger method marks the event's occurence

 void trigger(T)

 class event <T*> {

 public:

 event();

 void trigger(T*);

 }

11

Wait Points

 Blocks until events inside twait {..} are triggered

 Functions having twait{..}

 Marked with tamed keyword

 Blocks till the event inside {..} triggers

 Caller of the function returns

 Execution point and local variables preserved in memory

 Wait for all primitive

12

Wait Points Primitive

twait { statements; }

Example:

twait { at_delay_sec(5, make_event()); }

13

Events & Waitpoints

14

Events & Waitpoints

15

Rendezvous

 Associate relevant events to the wait point

 Every event object associates with one rendevous(r)

 twait(r) unblocks for the first trigger

 Consumes event and restarts the blocked function

 Event ID identifies events

16

Rendezvous Primitive

rendezvous <I> r

rendezvous<> r

…

make_event(r, I, T*)

make_event(r, I)

make_event(r)

…

twait(r, I)

twait(r)

17

Safe Local Variables

 Values are preserved across wait points

 Allocates the variables from the heap

 tvars {….}

18

Rendezvous & Safe local vars

19

Rendezvous & Safe local vars

20

Control Flow Example

21

Control Flow Example

22

Types and Composability

 Event ID

 Identify events

 Known during event registration

 All events on the same rendezvous must have the
same event ID type

 Trigger Values

 Are results

 Not known until event triggers

 Single rendezvous handles different typed trigger
values

23

Types and Composability

24

Types and Composability

25

Thread Support

 twait without tamed return type

 Yield and wakeup mechanism

 twait – to block the current thread

 tfork – to start a new thread

 Event blocking and joining on a thread unified

26

Memory Management

 Reference counting scheme to enforce invariants

I1 : A function's closure lives at least until control exits the
function for the last time.

I2 : A function's closure live as least until events created in
the function have triggered

I3 : Events associated with rendezvous r must trigger
exactly once before r is deallocated

27

Reference Counting Scheme

 Runtime takes care of events and closure

R1 : Entering/exiting a tamed function adds/removes a
 strong reference to the corresponding closure (I1)

R2 : Each event created inside closure holds strong
 reference to the closure. The reference is dropped
 once the event is triggered (I2)

R3 : A rendezvous and its associated events keep weak
 references. Allows for event cancellation before
 rendezvous deallocation (I3)

R4 : Exiting a tamed function cancels any rendezvous
 allocated in that function

28

Implementation

 Function pointers tracks the wait points of events in each
rendezvous

 The func parameters and safe local variables will be in a
closure structure

 C++ libraries and source-to-source translation

 No platform specific support or compiler modification
required.

29

Methodology

 OKWS – serial chains of asynchronous function calls

 OkCupid.com – User preferences

 NFS Server

30

Limitations

 Heavy usage of heap

 Heavy usage of synchronization primitivies

 Involves signature changes to convert a C++ code into
tame model

31

Performance

 Capriccio Knot server Vs Tamed version of Knot

 SpecWeb like benchmark – memory and CPU

 Server

 2 CPU 2.33 Ghz Xeon 5140 4GB RAM

 Ubuntu kernel 2.6.17-10

 Clients

 Array of six clients connected thru a gigabit switch

 200 simulatenous requests for 1 minute

32

Performance

Capriccio Tame

Throughput (conn / sec) 28318 28457

No. of Threads 350 1

Physical Memory (kB) 6560 2156

Virtual Memory (kB) 49517 10740

33

 Questions

