
1

Events Can Make Sense

Maxwell Krohn (MIT CSAIL)

Eddie Kohler (UCLA)

M. Frans Kaashoek (MIT CSAIL)

 Presented by Nabeel

2

Agenda

 Event Vs Threads

 Tame Abstraction

 Implementation

 Methodology

 Limitation

 Performance

3

Events

 Uses event loop and event handlers

 Advantages

 More expressive

 Uses less memory

 Easily portable

 Disadvantages

 Difficult to maintain and debug

 Manual memory management

 Stack ripping

4

Threads

 Uses different execution contexts for concurrency

 Advantages

 Standard control flow

 Automatically managed local variables

 Easy to maintain

 Disadvantages

 Synchronization bottleneck

 Consumes memory

 Context switch overhead

5

Challenge

 A combined model

1. the flexibility and performance of events

2. the programmability of threads

T A M E

6

TAME

 System for managing concurrency in network applications

 API for event based programming

 No stack ripping

 Automatic memory management

 Standard control flow

7

TAME

8

Tame Abstractions

 Events

- future occurence

 Wait Points

 - blocking point

 Rendezvous

 - flexible wait point

 Safe local variables

 - preserved across wait points

9

Events

 Represents the future occurence

 Event triggered via it's trigger method

 Terminology

 Event object

 Trigger slots

 Trigger values

10

Event Primitive

 To create a new event

event<T*> = make_event(T &)

 Trigger method marks the event's occurence

 void trigger(T)

 class event <T*> {

 public:

 event();

 void trigger(T*);

 }

11

Wait Points

 Blocks until events inside twait {..} are triggered

 Functions having twait{..}

 Marked with tamed keyword

 Blocks till the event inside {..} triggers

 Caller of the function returns

 Execution point and local variables preserved in memory

 Wait for all primitive

12

Wait Points Primitive

twait { statements; }

Example:

twait { at_delay_sec(5, make_event()); }

13

Events & Waitpoints

14

Events & Waitpoints

15

Rendezvous

 Associate relevant events to the wait point

 Every event object associates with one rendevous(r)

 twait(r) unblocks for the first trigger

 Consumes event and restarts the blocked function

 Event ID identifies events

16

Rendezvous Primitive

rendezvous <I> r

rendezvous<> r

…

make_event(r, I, T*)

make_event(r, I)

make_event(r)

…

twait(r, I)

twait(r)

17

Safe Local Variables

 Values are preserved across wait points

 Allocates the variables from the heap

 tvars {….}

18

Rendezvous & Safe local vars

19

Rendezvous & Safe local vars

20

Control Flow Example

21

Control Flow Example

22

Types and Composability

 Event ID

 Identify events

 Known during event registration

 All events on the same rendezvous must have the
same event ID type

 Trigger Values

 Are results

 Not known until event triggers

 Single rendezvous handles different typed trigger
values

23

Types and Composability

24

Types and Composability

25

Thread Support

 twait without tamed return type

 Yield and wakeup mechanism

 twait – to block the current thread

 tfork – to start a new thread

 Event blocking and joining on a thread unified

26

Memory Management

 Reference counting scheme to enforce invariants

I1 : A function's closure lives at least until control exits the
function for the last time.

I2 : A function's closure live as least until events created in
the function have triggered

I3 : Events associated with rendezvous r must trigger
exactly once before r is deallocated

27

Reference Counting Scheme

 Runtime takes care of events and closure

R1 : Entering/exiting a tamed function adds/removes a
 strong reference to the corresponding closure (I1)

R2 : Each event created inside closure holds strong
 reference to the closure. The reference is dropped
 once the event is triggered (I2)

R3 : A rendezvous and its associated events keep weak
 references. Allows for event cancellation before
 rendezvous deallocation (I3)

R4 : Exiting a tamed function cancels any rendezvous
 allocated in that function

28

Implementation

 Function pointers tracks the wait points of events in each
rendezvous

 The func parameters and safe local variables will be in a
closure structure

 C++ libraries and source-to-source translation

 No platform specific support or compiler modification
required.

29

Methodology

 OKWS – serial chains of asynchronous function calls

 OkCupid.com – User preferences

 NFS Server

30

Limitations

 Heavy usage of heap

 Heavy usage of synchronization primitivies

 Involves signature changes to convert a C++ code into
tame model

31

Performance

 Capriccio Knot server Vs Tamed version of Knot

 SpecWeb like benchmark – memory and CPU

 Server

 2 CPU 2.33 Ghz Xeon 5140 4GB RAM

 Ubuntu kernel 2.6.17-10

 Clients

 Array of six clients connected thru a gigabit switch

 200 simulatenous requests for 1 minute

32

Performance

Capriccio Tame

Throughput (conn / sec) 28318 28457

No. of Threads 350 1

Physical Memory (kB) 6560 2156

Virtual Memory (kB) 49517 10740

33

 Questions

