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Background 
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Each incoming  request is dispatched to a separate thread 

Note: Diagram taken from SEDA paper, SOSP 2001 



Background 
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The main thread processes incoming events & executes the 
finite state machines 

Note: Diagram taken from SEDA paper, SOSP 2001 



Motivation  

 Internet services have increasing scalability 
demands 
◦ Need simplified & user friendly  programming model 

 Available design approaches 
◦ Event model vs. Thread model 

 Problems 
◦ Event model 

 Hides the control flow 

 Difficult to debug 

◦ Thread model 
 Consume too much stack space 

 No scalability 

 No resource aware scheduling  
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Capriccio: Design Objectives  

 Use existing threads APIs 

 Improve scalability  

◦ One thread – one connection for Internet servers 

 Do efficient memory management  

 Perform resource aware scheduling  
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Capriccio Thread Package: 
Architecture  
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Capriccio Thread Package Advantages  

 Flexible to address application specific needs 

◦ Creates one level of indirection between 
application & the kernel 

◦ Easily scales up to 100k threads 

 Efficient memory management 

◦ Using compiler analysis 

◦ By Implementing linked stack  

 Efficient resource aware scheduling 

◦ By generating blocking graphs  
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Capriccio: Implementation 
 Context switches 
◦ Uses Toering’s coroutine library 
◦ Threads voluntarily yield  

 I/O 
◦ Uses latest Linux asynchronous I/O mechanisms 
 epoll and AIO  

◦ Increases over head 
 Scheduling 
◦ Resource based scheduling  

 Synchronization 
◦ Takes advantage of co-operative scheduling  
◦ Uses simple check like boolean locked/unlocked flag 

 Efficiency 
◦ All O(1) expect for sleep queue 
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Comparison Of Different Thread Packages 

Capriccio Capriccio_notrace Linux Thread NPTL 

Thread creation 21.5 21.5 37.9 17.7 

Thread context 
switch 

0.56 0.24 0.71 0.65 

Uncontended 
mutex lock 

0.04 0.04 0.14 0.15 
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 2X 2.4 GHz Xeon processors, 1 GB of memory. 

 2X 10k RPM SCSI Ultra II hard drives 

 3 Gigabit Ethernet interfaces. 

 Operating  System: Linux 2.5.70 ( epoll supported)     

 

Latencies (in micro seconds) of thread primitives for different thread 
packages 



Capriccio: Memory Management 

 Does a complier analysis 

◦  Generates weighted call graph 

 Linked stack management 

◦ Use dynamic allocation policy. 

◦ Allocate memory chunks on demand  

◦ Problems ? 
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Example  
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main ()  

{<data type declaration>  

function_A(<paramlist>); 

function_C(<paramlist>); 

} 

 

function_A(<paramlist>) 

{<data type declaration> 

 function_B(<paramlist>; 

function_D(<paramlist>); 

} 

 

function_B(<paramlist>) 

{<data type declaration> 

} 

 

function_D(<paramlist>) 

{<data type declaration> 

} 

 

 

function_C(<paramlist>) 

{<data type declaration> 

 function_E(<paramlist>; 

 function_D(<paramlist>; 

 

} 

 

function_E(<paramlist>) 

{<data type declaration> 

 function_C(<paramlist> 

} 

 



Weighted Call Graph  
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Weighted Call Graph  

 Each function is represented as a node 

◦ Weighted by the max stack size it need for execution 

 Each edge represents a direct function call 

 Checkpoints 

◦ Inserted at call sites at compile time. 

◦ Checks whether there is enough stack size left for reaching next 
checkpoint. 

◦ If there is no enough stack space ; it allocates a stack chunk. 

◦ Problem ?  

◦ Where we should insert checkpoints ?  
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Weighted Call Graph  
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Insert one check point in every cycle back edge 
 



Weighted Call Graph  
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• Use Bottom up approach   & MaxPath = 1.0 K 
• Check longest path from node to checkpoint, if 

MaxPath limit is exceeded, add checkpoint 
 



Weighted Call Graph  
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Memory Allocation - Runtime 
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• Internal wasted space 
• MaxPath 

• External wasted space 
• MinChunk 



Resource Aware Scheduling 

 Application is viewed as a sequence of 
stages separated by blocking points 

 Uses blocking graph 
◦ It is generated at run-time. 

◦ Each node is location in program that is blocked 

◦ Node is composed of call chain used to reach 
blocking point 

◦ Resource usage are annotated. 

 Resource usage is monitored & scheduling is done based 
on the resource usage patterns. 
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Blocking Graph 
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Pitfalls 

 Resource’s maximum capacity is difficult to 
determine. 

 It is difficult to detect thrashing  

◦ Involves system overhead. 

 Non yielding threads lead to unfairness and 
starvation 
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Experiments & Results  

 Thread Scalability 

◦ Producer & Consumer  

 I/O Performance test 

 Web Server tests  

◦ 4*500 MHz Pentium server with 2GB memory 

◦ Linux 2.4.20  

 No use of epoll or Linux AIO 
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Thread Scalability 

 Drop between 100 and 1000  due to cache footprint 
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 I/O Performance 

 Concurrently passing 12 byte token to fixed 
number of pipes 

 Disk head scheduling 

◦ A number of threads perform random 4 KB reads 
from a 1 GB file 

 Disk I/O through buffer cache 

◦ 200 threads reading with a fixed miss rate 
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When concurrency is low, performance also decreases 

24 



Benefits of disk head scheduling 
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Web Server Performance Test Results 

 Apache web server performance 
improved by 15% 

 Knot’s performance matched the 
performance of event-based Haboob 
webserver 
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Web Server Performance Test Results 



Conclusion 

 Capriccio illustrates that using user-level 
threads we can get 

◦ High scalability 

◦ Efficient memory/stack management 

◦ Resource based scheduling 

 Drawbacks 

◦ Lack of  multi-cpu support 
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Future Work 

 Extending Capriccio to multi processor 
environment. 

 Producing profiling tools to tune stack 
parameters according to the application 
needs 
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Critique 

 Capriccio thread library improves the 
scalability , memory management & thread 
scheduling 

◦ The techniques used by Capriccio are novel 

 

 Presently there is no support for Capriccio 
thread library 
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