
Capriccio : Scalable Threads for
Internet Services

- Ron von Behren &et al

- University of California , Berkeley.

Presented By:
Rajesh Subbiah

Background

2

Each incoming request is dispatched to a separate thread

Note: Diagram taken from SEDA paper, SOSP 2001

Background

3

The main thread processes incoming events & executes the
finite state machines

Note: Diagram taken from SEDA paper, SOSP 2001

Motivation

 Internet services have increasing scalability
demands
◦ Need simplified & user friendly programming model

 Available design approaches
◦ Event model vs. Thread model

 Problems
◦ Event model

 Hides the control flow

 Difficult to debug

◦ Thread model
 Consume too much stack space

 No scalability

 No resource aware scheduling

4

Capriccio: Design Objectives

 Use existing threads APIs

 Improve scalability

◦ One thread – one connection for Internet servers

 Do efficient memory management

 Perform resource aware scheduling

5

Capriccio Thread Package:
Architecture

6

Capriccio

Kernel

Apache web
server

App 1 App 2

Scheduler Memory mgt

Asy I/O

Capriccio Thread Package Advantages

 Flexible to address application specific needs

◦ Creates one level of indirection between
application & the kernel

◦ Easily scales up to 100k threads

 Efficient memory management

◦ Using compiler analysis

◦ By Implementing linked stack

 Efficient resource aware scheduling

◦ By generating blocking graphs

 7

Capriccio: Implementation
 Context switches
◦ Uses Toering’s coroutine library
◦ Threads voluntarily yield

 I/O
◦ Uses latest Linux asynchronous I/O mechanisms
 epoll and AIO

◦ Increases over head
 Scheduling
◦ Resource based scheduling

 Synchronization
◦ Takes advantage of co-operative scheduling
◦ Uses simple check like boolean locked/unlocked flag

 Efficiency
◦ All O(1) expect for sleep queue

 8

Comparison Of Different Thread Packages

Capriccio Capriccio_notrace Linux Thread NPTL

Thread creation 21.5 21.5 37.9 17.7

Thread context
switch

0.56 0.24 0.71 0.65

Uncontended
mutex lock

0.04 0.04 0.14 0.15

9

 2X 2.4 GHz Xeon processors, 1 GB of memory.

 2X 10k RPM SCSI Ultra II hard drives

 3 Gigabit Ethernet interfaces.

 Operating System: Linux 2.5.70 (epoll supported)

Latencies (in micro seconds) of thread primitives for different thread
packages

Capriccio: Memory Management

 Does a complier analysis

◦ Generates weighted call graph

 Linked stack management

◦ Use dynamic allocation policy.

◦ Allocate memory chunks on demand

◦ Problems ?

10

Example

11

main ()

{<data type declaration>

function_A(<paramlist>);

function_C(<paramlist>);

}

function_A(<paramlist>)

{<data type declaration>

 function_B(<paramlist>;

function_D(<paramlist>);

}

function_B(<paramlist>)

{<data type declaration>

}

function_D(<paramlist>)

{<data type declaration>

}

function_C(<paramlist>)

{<data type declaration>

 function_E(<paramlist>;

 function_D(<paramlist>;

}

function_E(<paramlist>)

{<data type declaration>

 function_C(<paramlist>

}

Weighted Call Graph

12

M

A

B E

C

D

0.5 K

0.8 K

1.0 K

0.2 K

0.2 K

0.2 K

Weighted Call Graph

 Each function is represented as a node

◦ Weighted by the max stack size it need for execution

 Each edge represents a direct function call

 Checkpoints

◦ Inserted at call sites at compile time.

◦ Checks whether there is enough stack size left for reaching next
checkpoint.

◦ If there is no enough stack space ; it allocates a stack chunk.

◦ Problem ?

◦ Where we should insert checkpoints ?

13

Weighted Call Graph

14

M

A

B E

C

D

0.5 K

0.8 K

1.0 K

0.2 K

0.2 K

0.2 K

Insert one check point in every cycle back edge

Weighted Call Graph

15

M

A

B E

C

D

0.5 K

0.8 K

1.0 K

0.2 K

0.2 K

0.2 K

• Use Bottom up approach & MaxPath = 1.0 K
• Check longest path from node to checkpoint, if

MaxPath limit is exceeded, add checkpoint

Weighted Call Graph

16

M

A

B E

C

D

0.5 K

0.8 K

1.0 K

0.2 K

0.2 K

0.2 K

Memory Allocation - Runtime

17

• Internal wasted space
• MaxPath

• External wasted space
• MinChunk

Resource Aware Scheduling

 Application is viewed as a sequence of
stages separated by blocking points

 Uses blocking graph
◦ It is generated at run-time.

◦ Each node is location in program that is blocked

◦ Node is composed of call chain used to reach
blocking point

◦ Resource usage are annotated.

 Resource usage is monitored & scheduling is done based
on the resource usage patterns.

 18

Blocking Graph

19

Pitfalls

 Resource’s maximum capacity is difficult to
determine.

 It is difficult to detect thrashing

◦ Involves system overhead.

 Non yielding threads lead to unfairness and
starvation

20

Experiments & Results

 Thread Scalability

◦ Producer & Consumer

 I/O Performance test

 Web Server tests

◦ 4*500 MHz Pentium server with 2GB memory

◦ Linux 2.4.20

 No use of epoll or Linux AIO

21

Thread Scalability

 Drop between 100 and 1000 due to cache footprint

22

 I/O Performance

 Concurrently passing 12 byte token to fixed
number of pipes

 Disk head scheduling

◦ A number of threads perform random 4 KB reads
from a 1 GB file

 Disk I/O through buffer cache

◦ 200 threads reading with a fixed miss rate

23

When concurrency is low, performance also decreases

24

Benefits of disk head scheduling

25

26

Web Server Performance Test Results

 Apache web server performance
improved by 15%

 Knot’s performance matched the
performance of event-based Haboob
webserver

27

Web Server Performance Test Results

Conclusion

 Capriccio illustrates that using user-level
threads we can get

◦ High scalability

◦ Efficient memory/stack management

◦ Resource based scheduling

 Drawbacks

◦ Lack of multi-cpu support

28

Future Work

 Extending Capriccio to multi processor
environment.

 Producing profiling tools to tune stack
parameters according to the application
needs

29

Critique

 Capriccio thread library improves the
scalability , memory management & thread
scheduling

◦ The techniques used by Capriccio are novel

 Presently there is no support for Capriccio
thread library

30

