
Disconnected Operation in the Coda File System

James J. Kistler and M. Satyanarayanan

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Disconnected operation is a mode of operation that enables
a client to continue accessing critical data during temporary

failures of a shared data repository. An importan~ though

not exclusive, application of disemmceted operation is in
supprting portable computers. In this paper, we show that

disconmxted operation is feasible, efficient and usable by

describkg its design and implementation in the Coda File
System. ‘f’he central idea behind our work is that caching of

data, now widely used for performance, can also be

exploited to improve availability.

1. Introduction
Every serious user of a distributed system has faced

situations where critical work has been impeded by a

remote failure. His frustration is particularly acute when

his workstation is powerful enough to be used standalone,

but has been configunxl to be dependent on remote

resources. An important instance of such dependence is the

use of data from a distributed file system.

Placing data in a distributed file system simplifies

collaboration between users, and allows them to delegate

the administration of that data. The growing popularity of

distributed file systems such as NFS [15] and AFS [18]

attests to the compelling nature of these considerations.

Unfortunately, the users of these systems have to accept the

fact that a remote failure at a critical juncture may seriously

inconvenience them.

This work was supperted by the Dsfarrae Advanced ResearchProjects Agency
(Avionics Lab, Wright Ressarch and Dsveloptrtent Center, Aeronautical Systems
Division (AFSC), U.S. Air Force, Wright-Pattarson AFB, Ohio, 45433-6543 under
Contract F33615-90-C-146 ARPA Order No. 7597), Naticnal .%ierrce Foundation
(PYI Award and GnarrtNo. ECD 890706S), IBM Corporation (Faculty Dr.velopr.nt
Award, Graduate Fellowship, and Resrarch Initiation Grant), Digital Equipmant
Corporation (Extsrrral Rmearch project Orant), and Bsllcnre (Irrforrrration
Networking Research Grant).

Permission to copy without fee all or part of this material is

grented provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notica and the

title of the publication and its date appear, and notice is given

that copying is by pei mission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fae

and/or specific permission.

01991 ACM 0-89791-447-3/91 /0009/021 3...$1.50

How can we improve this state of affairs? Ideally, we

would like to enjoy the benefits of a shared data repository,

but be able to continue critical work when that repository is

inaccessible. We call the latter mode of operation

disconnected operation, because it represents a temporary

deviation from normal operation as a client of a shared

repository.

In this paper we show that disconnected operation in a file

system is indeed feasible, efficient and usable. The central

idea behind our work is that caching of data, now widely

used to improve performance, can also be exploited to

enhance availability. We have implemented disconnected

operation in the Coda File System at Carnegie Mellon

University.

Our initial experience with Coda confirms the viability of

disconnected operation. We have successfully operated

disconnected for periods lasting four to five hours. For a

disconnection of this duration, the process of rcxonnecting

and propagating changes typically takes about a minute. A

local disk of 100MB has been adequate for us during these

periods of disconnection. Trace-driven simulations

indicate that a disk of about half that size should be

adequate for disconnections lasting a typical workday.

2. Design Overview
Coda is designed for an environment consisting of a large

collection of untrusted Unixl clients and a much smaller

number of trusted Unix file servers. The design is

optimized for the access and sharing patterns typical of

academic and research environments. It is specifically not

intended for applications that exhibit highly concurrent,

fine granularity data access.

Each Coda client has a local disk and can communicate

with the servers over a high bandwidth network. At certain

times, a client may be. temporarily unable to communicate

with some or all of the servers. This may be due to a server

or network failure, or due to the detachment of a portable

client from the network,

lUrrix is a trademark of AT&T.

213

X=12 X=12 X=12 x=87 x=87 X=87 x=33 x=87 x=87

,4’

,:

;

A’
X=12 x=87

x=87 x-al

X-37 x=33

(a) (b) (c)

x=45 X=45 x=45 X=45 x=87 x=87 x=87

J’ : 47% .JY

x=33 X477

X=45

X=45 X=4 x=

(f) (e) (d)

Three servers (mahler,vivakii, and raveZ)have replicas of the volume containing file x. This fite is potentially of interest to users at three
clients @ufe, viola, and harp). Flufe is capable of wireless communication (indicated by a dotted line) as well as regular network

communication. Proceeding clockwise, the steps above show the value of x seen by each node as the connectivity of the system changes.

Note that in step (d), J’ute is operating disconnected.

Figure 1: How Disconnected Operation Relates to Server Replication

Clients view Coda as a single, location-transparent shared
Unix file system. The Coda namespace is mapped to

individual file servers at the granularity of subtrees called

volumes. At each client, a cache manager (Venus)

dynamically obtains and caches volume mappings.

Coda uses two distinct, but complementary, mechanisms to

achieve high availability. The first mechanism, server

replication, allows volumes to have read-write replicas at

more than one server. The set of replication sites for a

volume is its volume storage group (VSG). The subset of a

VSG that is currently accessible is a client’s accessible

VSG (AVSG). The performance cost of server replication is

kept low by caching on disks at clients and through the use

of parallel access protocols. Venus uses a cache coherence

protocol based on callbacks [9] to guarantee that an open of

a file yields its latest copy in the AVSG. This guarantee is

provided by servers notifying clients when their cached

copies are no longer valid, each notification being referred

to as a “callback break.” Modifications in Co& are

propagated in parallel to all AVSG sites, and eventually to

missing VSG sites.

Disconnected operation, the second high availability

mechanism used by Coda, takes effect when the AVSG

becomes empty. While disconnected, Venus services file

system requests by relying solely on the contents of its

cache. Since cache misses cannot be serviced or masked,

they appear as failures to application programs and users.

When disconnection ends, Venus propagates modifications

and reverts to server replication. Figure 1 depicts a typical

scenario involving transitions between server replication

and disconnected operation.

Earlier Coda papers [17, 18] have described server

replication in depth. In contras$ this paper restricts its

attention to disconnected operation. We discuss server

replication only in those areas where its presence has

significantly influenced our design for disconnected

operation.

3. Design Rationale
At a high level, two factors influenced our strategy for high

availability. First, we wanted to use conventional, off-the-

shelf hardware throughout our system. Second, we wished

to preserve transparency by seamlessly integrating the high

availability mechanisms of Coda into a normal Unix

environment.

At a more detailed level, other considerations influenced

our design. These include the need to scale gracefully, the

advent of portable workstations, the very different

resource, integrity, and securi~ assumptions made about

214

clients and servers, and the need to strike a balance

between availability and consistency. We examine each of

these issues in the following sections.

3.1. Scalability

Successful distributed systems tend to grow in size. Our

experience with Coda’s ancestor, AFS, had impressed upon
us the need to prepare for growth a priori, rather than

treating it as an afterthought [16]. We brought this

experience to bear upon Coda in two ways. First, we

adopted certain mechanisms that enhance scalability.

Second, we drew upon a set of general principles to guide

our design choices.

An example of a mechanism we adopted for scalability is

callbdck-based cache coherence. Another such mechanism,

whole-file caching, offers the added advantage of a much

simpler failure model: a cache miss can only occur on an

open, never on a read, write, seek, or close. This,

in turn, substantially simp1it3es the implementation of

disconnected operation. A partial-fde caching scheme such

as that of AFS-4 [21], Echo [8] or Ml% [1] would have

complicated our implementation and made disconnected

operation less transparent.

A scalability principle that has had considerable influence

on our design is the placing of functionality on clients

rather than servers. Only if integrity or security would

have been compromised have we violated this principle.

Another scalability principle we have adopted is the

avoidance of system-wide rapid change. Consequently, we

have rejected strategies that require election or agreement

by large numbers of nodes. For example, we have avoided

algorithms such as that used in Locus [22] that depend on

nodes achieving consensus on the current partition state of

the network.

3.2. Portable Workstations

Powerful, lightweight and compact laptop computers are

commonplace today. It is instructive to observe how a

person with data in a shared file system uses such a

machine. Typically, he identifies files of interest and

downloads them horn the shared file system into the local

name space for use while isolated. When he returns, he

copies modified files back into the shared file system.

Such a user is effectively performing manual caching, with

write-back upon reconnection!

Early in the design of Coda we realized that disconnected

operation could substantially simplify the use of portable
clients. Users would not have to use a different name space

while isolated, nor would they have to manually propagate

changes upon reconnection. Thus portable machines are a

champion application for disconnected operation.

The use of portable machines also gave us another insight.

The fact that people rue able to operate for extended

periods in isolation indicates that they ate quite good at

predicting their future file access needs. This, in turn,

suggests that it is reasonable to seek user assistance in

augmenting the cache management policy for disconnected

operation.

Functionally, involuntary disconnections caused by failures

are no different from voluntary disconnections caused by

unplugging portable computers. Hence Coda provides a

single m~h-mism to co~ with all

course, there may be qualitative

expectations as well as the extent of

likely to be different in the two cases.

disconnections. Of

differences: user

user cooperation are

3.3. First vs Second Class Replication
If disconnected operation is feasible, why is server

replication needed at all? The answer to this question

depends critically on the very different assumptions made

about clients and servers in Coda.

Clients are like appliances: they can be turned off at will

and may be unattended for long periods of time. They have

limited disk storage capacity, their software and hardware

may be tampered with, and their owners may not be

diligent about backing up the local disks. Servers are like

public utilities: they have much greater disk capacity, they

are physically secure, and they are carefully monitored and

administered by professional staff.

It is therefore appropriate to distinguish between firsr class

replicas on servers, and second class replicas (i.e., cache

copies) on clients. First class replicas are of higher quality:

they are more persistent, widely known, secure, available,

complete and accurate. Second class replicas, in contrast,

are inferior along all these dimensions. Only by periodic

revalidation with respect to a first class replica can a

second class replica be useful.

The function of a cache coherence protocol is to combine

the performance and scalability advantages of a second

class replica with the quality of a first class replica. When

disconnected, the quality of the second class replica maybe

degraded because the fwst class replica upon which it is

contingent is inaccessible. The longer the duration of

disconnection, the greater the potential for degradation.

Whereas server replication preserves the quality of data in

the face of failures, disconnected operation forsakes quality

for availability. Hence server replication is important

because it reduces the frequency and duration of
disconnected operation, which is properly viewed as a

measure of last resort.

Server replication is expensive because it requires

additional hardware. Disconnected operation, in contrast,

215

costs little. Whether to use server replication or not is thus

a tradeoff between quality and cost. Coda does permit a

volume to have a sole server replica. Therefore, an

installation can rely exclusively on disconnected operation

if it so chooses.

3.4. Optimistic vs Pessimistic Replica Control

By definition, a network partition exists between a

disconnected second class replica and all its first class

associates. The choice between two families of replica

control strategies, pessimistic and optimistic [5], is

therefore central to the design of disconnected operation.

A pessimistic strategy avoids conflicting operations by

disallowing all partitioned writes or by restricting reads and

writes to a single partition. An optimistic strategy provides

much higher availability by permitting reads and writes

everywhere, and deals with the attendant danger of

conflicts by detecting and resolving them after their

occurence.

A pessimistic approach towards disconnected operation

would require a client to acquire shared or exclusive

control of a cached object prior to disconnection, and to

retain such control until reconnection. Possession of

exclusive control by a disconnected client would preclude

reading or writing at all other replicas. Possession of

shared control would allow ~ading at other replicas, but

writes would still be forbidden everywhere.

Acquiring control prior to voluntary disconnection is

relatively simple. It is more difficult when disconnection is

involuntary, because the system may have to arbitrate

among multiple requesters. Unfortunately, the information

needed to make a wise decision is not readily available.

For example, the system cannot predict which requesters

will actually use the object, when they will release control,

or what the relative costs of denying them access would be.

Retaining control until reconnection is acceptable in the

case of brief disconnections. But it is unacceptable in the

case of extended disconnections. A disconnected client

with shared control of an object would force the rest of the

system to defer all updates until it reconnected. With

exclusive control, it would even prevent other users from
making a copy of the object. Coercing the client to

reconnect may not be feasible, since its whereabouts may

not be known. Thus, an entire user community could be at

the mercy of a single errant client for an unbounded

amount of time.

Placing a time bound on exclusive or shared control, as

done in the case of leases [7], avoids this problem but

introduces others. Once a lease expires, a disconnected

client loses the ability to access a cached object, even if no

else in the system is interested in it. This, in turn, defeats

the purpose of disconnected operation which is to provide

high availability. Worse, updates already made while

disconnected have to be discarded.

An optimistic approach has its own disadvantages. An

update made at one disconnected client may conflict with

an update at another disconnected or connected client. For

optimistic ~plication to be viable, the system has to be

more sophisticated. ‘l%ere needs to be machinery in the

system for detecting conflicts, for automating resolution

when possible, and for confiiing damage and preserving

evidence for manual repair. Having to repair conflicts

manually violates transparency, is an annoyance to users,

and reduces the usability of the system.

We chose optimistic replication because we felt that its

strengths and weaknesses better matched our design goals.

The dominant influence on our choice was the low degree

of write-sharing typical of Unix. This implied that an

optimistic strategy was likely to lead to relatively few

conflicts. An optimistic strategy was also consistent with

our overall goal of providing the highest possible

availability of data.

In principle, we could have chosen a pessimistic strategy

for server replication even after choosing an optimistic

strategy for disconnected operation. But that would have

reduced transparency, because a user would have faced the

anomaly of being able to update data when disconnected,

but being unable to do so when connected to a subset of the

servers. Further, many of the previous arguments in favor

of an optimistic strategy also apply to server replication.

Using an optimistic strategy throughout presents a uniform

model of the system from the user’s perspective. At any

time, he is able to read the latest data in his accessible

universe and his updates are immediately visible to

everyone else in that universe. His accessible universe is

usually the entire set of servers and clients. When failures

occur, his accessible universe shrinks to the set of servers

he can contact, and the set of clients that they, in turn, can

contact. In the limit, when he is operating disconnected,

his accessible universe consists of just his machine. Upon

reconnection, his updates become visible throughout his

now-enlarged accessible universe.

4. Detailed Design and Implementation
In describing our implementation of disconnected

operation, we focus on the client since this is where much

of the complexity lies. Section 4.1 describes the physical

structure of a client, Section 4.2 introduces the major states

of Venus, and Sections 4.3 to 4.5 discuss these states in

detail. A description of the server support needed for

disconnected operation is contained in Section 4.5.

216

4.1. Client Structure
Because of the complexity of Venus, we made it a user

level process rather than part of the kernel. The latter

approach may have yielded better performance, but would

have been less portable and considerably more difficult to

debug. Figure 2 illustrates the high-level structure of a

Coda client.

Figure 2: Structure of a Coda Client

Venus intercepts Unix file system calls via the widely-used

Sun Vnode interface [10]. Since this interface imposes a

heavy performance overhead on user-level cache managers,

we use a tiny in-kernel MiniCache to filter out many

kernel-Venus interactions. The MiniCache contains no

support for remote access, disconnected operation or server

replication; these functions are handled entirely by Venus.

A system call on a Coda object is forwarded by the Vnode

interface to the MiniCache. If possible, the call is serviced

by the MiniCache and control is returned to the application.

Otherwise, the MiniCache contacts Venus to service the

call. This, in turn, may involve contacting Coda servers.

Control returns from Venus via the MiniCache to the

application program, updating MiniCache state as a side

effect. MiniCache state changes may also be initiated by

Venus on events such as callback brehks from Coda

servers. Measurements from our implementation confirm

that the MiniCache is critical for good performance [20].

4.2. Venus States
Logically, Venus operates in one of three states: hoarding,

emulation, and reintegration. Figure 3 depicts these states

and the transitions between them. Venus is normally in the

hoarding state, relying on server replication but always on

the alert for possible disconnection. Upon disconnection, it

enters the emulation state and remains there for the
duration of disconnection. Upon reconnection, Venus

enters the reintegration state, desynchronizes its cache with
its AVSG, and then reverts to the hoarding state. Since all

volumes may not be replicated across the same set of

servers, Venus can be in different states with respect to

different volumes, depending on failure conditions in the

system.

nHoarding

When disconnected, Venus is in the emulation state. It
transits to reintegration upxr successful reconnection to
an AVSG member, and thence to hoarding, where it
resumes connected operation.

Figure 3: Venus States and Transitions

4.3. Hoarding
The hoarding state is so named because a key responsibility

of Venus in this state is to hoard useful data in anticipation

of disconnection. However, this is not its only
responsibility. Rather, Venus must manage its cache in a

manner that balances the needs of connected and

disconnected operation. For instance, a user may have

indicated that a certain set of files is critical but may

currently be using other files. To provide good

performance, Venus must cache the latter files. But to be

prepared for disconnection, it must rdso cache the former

set of files.

Many factors complicate the implementation of hoarding:

. File reference behavior, especially in the
distant future, cannot be predicted with
certainty.

. Disconnections and reconnection are often

unpredictable.

. The true cost of a cache miss while
disconnected is highly variable and hard to
quantify.

. Activity at other clients must be accounted for,
so that the latest version of an object is in the
cache at disconnection.

. Since cache space is finite, the availability of
less critical objects may have to be sacrificed
in favor of more critical objects.

To address these concerns, we manage the cache using a
prioritized algorithm, and periodically reevaluate which

objects merit retention in the cache via a process known as

hoard walking.

217

#
a

a

a

#

a

a

a

a

a

a

a

Personal files # XII files

/coda/usr/jjk d+ # (from XII maintainer)

/coda/usr/j jk/PaPers loo:d+ a /usr/Xll/bin/X

/coda/usr/ jjk/paperslsOsP 1000 :d+ a /usr/Xll/bin/Xvga

a /usr/Xll/bin/mwm

System files a /usr/Xl l/bin/ startx

/usr/bin 100:d+ a /usr/Xll /bin/xclock

/usr/etc 100 :d+ a /usr/Xll/bin/xinit

/usr/include 100:d+ a /usr/Xll/bin/xterm

/usr/lib 100:d+ a /usr/Xll/i nclude/Xll/bitmaps c+

/usr/local/gnu d+ a /usr/Xll/l ib/app-defaults d+

/usr/local/rcs d+ a /usr/Xll/lib/fonts/mist c+

/usr/ucb d+ a /usr/Xll/ lib/system .mwrnrc

$ Venus source files

(shared among Coda developers)

a /coda /project /coda /src/venus 100 :c+

a /coda/project/coda/include 100:c+

a /coda/project/coda/lib c+

(c)

(a) (b)

These am typical hoard profiles provided by a Cwla user, art application maintainer, and a group of project developers. Each profile is

interpreted separately by the HDB front-end program. The ‘a’ at the beginning of a line indicates an add-entry command. Other
commands are delete an entry, clear aU entries, and list entries. The modifiers following some pathnames specify non-default priorities

(the default is 10) and/or meta-expattsion for the entry. Note that the patbnames beginning with ‘/nsr’ arc actually symbotic links into

‘/coda’.

Figure 4: Sample Hoard Profiles .

4.3.1. Prioritized Cache Management

Venus combines implicit ~nd explicit sources of

information in its priority-based cache management

algorithm. The implicit information consists of recent

reference history, as in traditional caching algorithms.

Explicit information takes the form of a per-workstation

hoard database (HDB), whose entries are pathnames

identifying objects of interest to the user at that

workstation.

A simple front-end program allows a user to update the

HDB using command scripts called hoard profiles, such as

those shown in Figure 4. Since hoard profiles are just files,

it is simple for an application maintainer to provide a

common profile for his users, or for users collaborating on

a project to maintain a common profile. A user can

customize his HDB by specifying different combinations of

profiles or by executing front-end commands interactively.

To facilitate construction of hoard profiles, Venus can

record all file references observed between a pair of start

and stop events indicated by a user.

To reduce the verbosity of hoard profiles and the effort

needed to maintain them, Venus supports meta-expansion

of HDB entries. As shown in Figure 4, if the letter ‘c’ (or

‘d’) follows a pathname, the command also applies to

immediate children (or all descendants). A ‘+’ following

the ‘c’ or ‘d’ indicates that the command applies to all
future as well as present children or descendants. A hoard

entry may optionally indicate a hoard priorify, with higher
priorities indicating more critical objects.

The current priority of a cached object is a function of its

hoard priority as well as a metric representing recent usage.

The latter is updated continuously in response to new

references, and serves to age the priority of objects no

longer in the working set. Objects of the lowest priority

are chosen as victims when cache space has to be

reclaimed.

To resolve the pathname of a cached object while

disconnected, it is imperative that all the ancestors of the

object also be cached. Venus must therefore ensure that a

cached directory is not purged before any of its

descendants. This hierarchical cache management is not

needed in traditional file caching schemes because cache

misses during name translation can be serviced, albeit at a

performance cost. Venus performs hierarchical cache

management by assigning infinite priority to directories

with cached children. This automatically forces

replacement to occur bottom-up.

4.3.2. Hoard Walking

We say that a cache is in equilibrium, signifying that it

meets user expectations about availability, when no

uncached object has a higher priority than a cached object.

Equilibrium may be disturbed as a result of normal activity.

For example, suppose an object, A, is brought into the

cache on demand, replacing an object, B. Further suppose

that B is mentioned in the HDB, but A is not. Some time

after activity on A ceases, its priority will decay below the

hoard priority of B. The cache is no longer in equilibrium,

since the cached object A has lower priority than the

uncached object B.

Venus periodically restores equilibrium by performing an

operation known as a hoard walk. A hoard walk occurs
every 10 minutes in our current implementation, but one
may be explicitly requested by a user prior to voluntary

disconnection. The walk occurs in two phases. First, the

name bindings of HDB entries are reevaluated to reflect

update activity by other Coda clients. For example, new

children may have been created in a directory whose

pathname is specified with the ‘+’ option in the HDB.

Second, the priorities of all entries in the cache and HDB

are reevaluated, and objects fetched or evicted as needed to

restore equilibrium.

218

Hoard walks also address a problem arising from callback

breaks. In traditional callback-based caching, data is

refetched only on demand after a callback break. But in

Coda, such a strategy may result in a critical object being

unavailable should a disconnection occur before the next

reference to it. Refetching immediately upon callback

break avoids this problem, but ignores a key characteristic

of Unix environments: once an object is modified, it is

likely to be modified many more times by the same user

within a short interval [14, 6]. An immediate refetch

policy would increase client-server traffic considerably,

thereby reducing scalability.

Our strategy is a compromise that balances availability,

consistency, and scalability. For files and symbolic links,

Venus purges the object on callback break, and refetches it

on demand or during the next hoard walk, whichever

occurs earlier. If a disconnection were to occur before

refetching, the object would be unavailable. For

directories, Venus does not purge on callback break, but

marks the cache entry suspicious. A stale cache entry is

thus available should a disconnection occur before the next

hoard walk or reference. The acceptability of stale

directory data follows from its particular callback

semantics. A callback break on a directory typically means

that an entry has been added to or deleted from the

directory. It is often the case that other directory entries

and the objects they name are unchanged. Therefore,

saving the stale copy and using it in the event of untimely

disconnection causes consistency to suffer only a little, but

increases availability y considerably.

4.4. Emulation
In the emulation state, Venus performs many actions

normally handled by servers. For example, Venus now

assumes full responsibility for access and semantic checks.

It is also responsible for generating temporary JZe

iakntijiers (fids) for new objects, pending the assignment of

permanent fids at ~integration. But although Venus is

functioning as a pseudo-server, updates accepted by it have

to be revalidated with respect to integrity and protection by

real servers. This follows from the Coda policy of trusting

only servers, not clients. To minimize unpleasant delayed

surprises for a disconnected user, it behooves Venus to be

as faithful as possible in its emulation.

Cache management during emulation is done with the same

priority algorithm used during hoarding. Mutating

operations directly update the cache entries of the objects

involved. Cache entries of deleted objects me freed
immediately. but those of other modified objects assume

infinite priority so that they are not purged before

reintegration. On a cache miss, the default behavior of

Venus is to return an error code. A user may optionally

request Venus to block his processes until cache misses can

be serviced.

4.4.1. Logging

During emulation, Venus records sufficient information to

replay update activity when it reintegmtes. It maintains

this information in a per-volume log of mutating operations

called a replay log. Each log entry contains a copy of the

corresponding system call arguments as well as the version

state of all objects referenced by the call.

Venus uses a number of optimizations to reduce the length

of the replay log, resulting in a log size that is typically a

few percent of cache size. A small log conserves disk

space, a critical resource during periods of disconnection.

It also improves reintegration performance by reducing

latency and server load.

One important optimization to reduce log length pertains to

writ e operations on files. Since Coda uses whole-file

caching, the close after an open of a file for
modification installs a completely new copy of the file.

Rather than logging the open, close, and intervening

writ e operations individually, Venus logs a single

store record during the handling of a close.

Another optimization consists of Venus discarding a

previous store record for a file when a new one is

appended to the log. This follows from the fact that a

store renders all previous versions of a file superfluous.

The store record does not contain a copy of the file’s

contents, but merely points to the copy in the cache.

We are currently implementing two further optimization

to reduce the length of the replay log. The fiist generalizes

the optimization described in the previous paragraph such

that any operation which overwrites the effect of earlier

operations may cancel the corresponding log records. An

example would be the canceling of a store by a

subsequent unlink or truncate. The second

optimization exploits knowledge of inverse operations to

cancel both the inverting and inverted log records. For

example, a rmdi r may cancel its own log record as well

as that of the corresponding mkdi r.

4.4.2. Persistence

A disconnected user must be able to restart his machine

after a shutdown and continue where he left off. In case of

a crash, the amount of data lost should be no greater than if

the same failure occurred during connected operation. To

provide these guarantees, Venus must keep its cache and

related data structures in non-volatile storage.

Mets-data, consisting of cached directory and symbolic

link contents, status blocks for cached objects of all types,

replay logs, and the HDB, is mapped

space as recoverable virtual
Transactional access to this memory

RVM library [12] linked into Venus.

into Venus’ ad~ess

memory (RVNf).
is suppmted by the

The actual contents

219

of cached files are not in RVM, but are stored as local Unix

files.

The use of transactions to manipulate meta-data simplifies

Venus’ job enormously. To maintain its invariants Venus

need only ensure that each transaction takes meta-data from

one consistent state to another. It need not be concerned

with crash recovery, since RVM handles this transparently.

If we had chosen the obvious alternative of placing meta-

data in local Unix files, we would have had to follow a

strict discipline of carefully timed synchronous writes and

an ad-hoc recove~ algorithm.

RVM supports local, non-nested transactions and allows’

independent control over the basic transactional properties

of atomicity, permanence, and serializability. Au

application can reduce commit latency by labelling the

commit as no-flush, thereby avoiding a synchronous write

to disk. To ensure persistence of no-flush transactions, the

application must explicitly flush RVM’s write-ahead log

from time to time. When used in this manner, RVM

provides bounded persistence, where the bound is the

period between log flushes.

Venus exploits the capabilities of RVM to provide good

performance at a constant level of persistence. When

hoarding, Venus initiates log flushes infrequently, since a

copy of the data is available on servers. Since servers are

not accessible when emulating, Venus is more conservative

and flushes the log more frequently. This lowers

performance, but keeps the amount of data lost by a client

crash within acceptable limits.

4.4.3. Resource Exhaustion

It is possible for Venus to exhaust its non-volatile storage

during emulation. The two significant instances of this are

the file cache becoming filled with modified files, and the

RVM space allocated to replay logs becoming full.

Our current implementation is not very graceful in

handling these situations. When the file cache is full, space

can be freed by truncating or deleting modified files.

When log space is full, no further mutations are allowed

until reintegration has been performed. Of course, non-

mutating operations are always allowed.

We plan to explore at least three alternatives to free up disk

space while emulating. One possibility is to compress file

cache and RVM contents. Compression trades off

computation time for space, and recent work [2] has shown

it to be a promising tool for cache management. A second

possibility is to allow users to selectively back out updates

made while disconnected. A third approach is to allow

portions of the file cache and RVM to be written out to

removable media such as floppy disks.

4.5. Reintegration

Reintegration is a transitory state through which Venus

passes in changing roles from pseudo-server to cache
manager. In this state, Venus propagates changes made

during emulation, and updates its cache to reflect current

server state. Reintegration is performed a volume at a time,

with all update activity in the volume suspended until

completion.

4.5.1. Replay Algorithm

The propagation of changes from client to AVSG is

accomplished in two steps. In the fiist step, Venus obtains

permanent fids for new objects and uses them to replace

temporary fids in the replay log. This step is avoided in

many cases, since Venus obtains a smaIl supply of

permanent fids in advance of need, while in the hoarding

state. In the second step, the replay log is shipped in

parallel to the AVSG, and executed independently at each

member. Each server performs the replay within a single

transaction, which is aborted if any error is detected.

The replay algorithm consists of four phases. In phase one

the log is parsed, a transaction is begun, and all objects

referenced in the log are locked. In phase two, each

operation in the log is validated and then executed. The

validation consists of conflict detection as well as integrity,

protection, and disk space checks. Except in the case of

store operations, execution during replay is identical to

execution in connected mode. For a store, an empty

shadowjile is created and meta-data is updated to reference

it, but the data transfer is deferred. Phase three consists

exclusively of performing these data transfers, a process

known as back-fetching. The fiml phase commits the

transaction and releases all locks.

If reintegration succeeds, Venus frees the replay log and

resets the priority of cached objects referenced by the log.

If reintegration fails, Venus writes out the replay log to a

local replay file in a superset of the Unix tar format. The

log and all corresponding cache entries are then purged, so

that subsequent references will cause refetch of the current

contents at the AVSG. A tool is provided which allows the

user to inspect the contents of a replay file, compare it to

the state at the AVSG, and replay it selectively or in its

entirety.

Reintegration at finer granularity than a volume would

reduce the latency prceived by clients, improve

concurrence y and load balancing at servers, and reduce user

effort during manual replay. To this end, we are revising

our implementation to reintegrate at the granularity of

subsequences of dependent operations within a volume.

Dependent subsequences can be identified using the

precedence graph approach of Davidson [4]. In the revised

implementation Venus will maintain precedence graphs

during emulation, and pass them to servers along with the

replay log.

LLU

4.5.2. Conflict Handling

Our use of optimistic replica control means that the

disconnected operations of one client may conflict with

activity at servers or other disconnected clients. The only

class of conflicts we are concerned with are writelwrite

conflicts. Read/write conflicts are not relevant to the Unix

file system model, since it has no notion of atomicity

beyond the boundary of a single system call.

The check for conflicts relies on the fact that each replica

of an object is tagged with a storeid that uniquely identifies

the last update to it. During phase two of replay, a server

compares the storeid of every object mentioned in a log

entry with the storeid of its own replica of the object. If the

comparison indicates equality for all objects, the operation

is performed and the mutated objects are tagged with anew

stomid specified in the log entry.

If a storeid comparison fails, the action taken depends on

the operation being validated. In the case of a st ore of a

file, the entire reintegration is aborted. But for directories,

a conflict is declared only if a newly created name collides

with an existing name, if an object updated at the client or

the server has been deleted by the other, or if directory

attributes have been modified at the server and the client.

This strategy of resolving partitioned directory updates is

consistent with our strategy in server replication [11], and

was originally suggested by Locus [22].

Our original design for disconnected operation called for

preservation of replay files at servers rather than clients.

This approach would also allow damage to be confined by

marking conflicting replicas inconsistent and forcing

manual repair, as is currently done in the case of server

replication. We are awaiting more usage experience to

determine whether this is indeed the correct approach for

disconnected operation.

5. Status and Evaluation
Today, Coda runs on IBM RTs, Decstation 3100s and

5000s, and 386-based laptops such as the Toshiba 5200. A

small user community has been using Coda on a daily basis

as its primary data repository since April 1990. All

development work on Coda is done in Coda itself. As of

July 1991 there were nearly 350MB of triply-replicated

data in Coda, with plans to expand to 2GB in the next few

months.

A version of disconnected operation with minimal

functionality was demonstrated in October 1990. A more

complete version was functional in January 1991, and is
now in regular use. We have successfully operated

disconnected for periods lasting four to five hours. Our

experience with the system has been quite positive, and we

are confident that the refinements under development will

result in an even more usable system.

In the following sections we provide qualitative and

quantitative answers to three important questions

pertaining to disconnected operation. These are

1. How long does reintegration take?

2. How large a local disk does one need?

3. How likely are conflicts?

5.1. Duration of Reintegration
In our experience, typical disconnected sessions of editing

and program development lasting a few hours require about

a minute for reintegration. To characterize reintegration

speed more precisely, we measured the reintegration times

after disconnected execution of two well-defined tasks.

The frost task is the Andrew benchmark [9], now widely

used as a basis for comparing file system performance.

The second task is the compiling and linking of the current

version of Venus. Table 1 presents the reintegration times

for these tasks.

The time for reintegration consists of three components:

the time to allocate permanent fids, the time for the replay

at the servers, and the time for the second phase of the

update protocol used for server replication. The fwst

component will be zero for many disconnections, due to

the pmalloeation of fids during hoarding. We expect the

time for the second component to fall, considerably in

many cases, as we incorporate the last of the replay log

optimization deseribed in Section 4.4.1. The third

component can be avoided only if server replication is not

used.

One can make some interesting secondary observations

from Table 1. First, the total time for reintegration is

roughly the same for the two tasks even though the Andrew

benchmark has a much smaller elapsed time. This is

because the Andrew benchmark uses the file system more

intensively. Second, reintegration for the Venus make

takes longer, even though the number of entries in the

replay log is smaller. This is because much more file data

is back-fetched in the third phase of the replay. Finally,

neither task involves any think time. As a resul~ their

reintegration times are comparable to that after a much

longer, but more typical, disconnected session in our

environment.

5.2. Cache Size
A local disk capacity of 100MB on our clients has proved

adequate for our initial sessions of disconnected operation.
To obtain a better understanding of the cache size

requirements for disconnected operation, we analyzed file

reference traces from our environment. The traces were

obtained by instrumenting workstations to record

information on every file system operation, regardless of

whether the file was in Coda, AFS, or the local file system.

221

Reintegration Time (seconds)
Elapsed Time

Size of Replay Log , Data Back-Fetched

(seeonds) Total AIIoeFid Replay COP.2 Records Bytea (Bytes)

Andrew

Benchmark
288 (3) 43 (2) 4 (2) 29 (1) 10 (1) 223 65,010 1,141,315

Venus
Make 3,271 (28) 52 (4) 1 (o) 40 (1) 10 (3) 193 65,919 2,990,120

This data was obtained with a Toshiba T52OW1OO cfient (12MB memory, 100MB disk) reintegrating over an Ethernet with arr IBM

RT-APC server (12MB memory, 400MB disk). The values shown above are the means of three trials. Figures in parendteses are

standard deviations.

Table 1: Time for Reintegration

Our analysis is based on simulations driven by these traces.

Writing and validating a simulator that precisely models

the complex caching behavior of Venus would be quite

difficult. To avoid this difficulty, we have modified Venus

to act as its own simulator. When running as a simulator,

Venus is driven by traces rather than requests from the

kernel. Code to communicate with the servers, as well

code to perform physical I/O on the local file system are

stubbed out during simulation.

350-
$!

$

-n

— Max

p40 - – Avg

g, ----- Alin
*
@30 “
z
~

s 20 “
&
.gl
z ___ ——- .

10 -
~----

. -. ----

0 2 4 6 8

l% (hours~

This graph is based on a total of 10 traces from 5 active

Coda workstations. The curve labelled “Avg”

corresponds to the values obtained by averagirrg the

high-water marks of alf workstations. The curves

labelled “Max” and “Min” plot the highest and lowest
values of the high-water marks across alt workstations.

Note that the higl-water mark does not include space

needed for paging, the HDB or replay logs.

Figure 5: High-Water Mark of Cache Usage

Figure 5 shows the high-water mark of cache usage as a

function of time. The actual disk size needed for

disconnected operation has to be larger, since both the

explicit and implicit sources of hoarding information are
imperfect. From our data it appears that a disk of

50-60MB should be adequate for operating disconnected

for a typical workday. Of course, user activity that is

drastically different fmm what was recorded in our traces

could produce significantly different results.

We plan to extend our work on trace-driven simulations in

three ways. First, we will investigate cache size

requirements for much longer periods of disconnection.

Second, we will be sampling a broader range of user

activity by obtaining traces from many more machines in

our environment. Third, we will evaluate the effect of

hoarding by simulating traces together with hoard profiles

that have been specified ex ante by users.

5.3. Likelihood of Conflicts
In our use of optimistic server replication in Coda for

nearly a year, we have seen virtually no conflicts due to

multiple users updating an object in different network

partitions. While gratifying to us, this observation is

subject to at least three criticisms. First, it is possible that

our users are being cautious, knowing that they are dealing

with an experimental system. Second, perhaps conflicts

will become a problem only as the Coda user community

grows larger. Third, perhaps extended voluntary

disconnections will lead to many more conflicts.

To obtain data on the likelihood of conflicts at larger scale,

we instrumented the AFS servers in our environment.

These servers are used by over 400 computer science

faculty, staff and graduate students for research, program

development, and education. Their usage profiie includes a

significant amount of collaborative activity. Since Coda is

descended from AFS and makes the same kind of usage

assumptions, we can use this data to estimate how frequent

conflicts would be if Coda were to replace AFS in our
environment.

Every time a user modifies an AFS file or directory, we

compare his identity with that of the user who made the

previous mutation. We also note the time interval between

mutations. For a file, only the close after an open for

update is counted as a mutation; individual write

operations are not counted. For directories, all operations

that modify a directory are counted as mutations.

222

Type of Number of Type of Total
Different Uaar

Volume Volumes Object Mutations Same User

Total < lrnin c 10 min < lbr <ldsy <lwk

Files 3,287,135
user 529

99.87 % 0.13 % 0.04 % 0.05 % 0.06 % 0.09 % 0.09 %

Directories 4,132,066 99.80 % 0.20 % 0.04 % 0.07 % 0.10 % 0.15 % 0.16 %

Files 4,437,311
Project

99.66 %
108

0.34% 0.17 % 0.25 % 0.26 % 0.28 % t3.30 %

Directories 5,391,224 99.63 % 0.37 % 0.00 % 0.01 % 0.03 % 0.09 % ().15 %

Fdes 5,526,700
System 398

99.17 % 0.83 % 0.06 % 0.18 % 0.42 % 0.72 % 0.78 %

Directories 4,338,507 99.54 % 0.46 % 0.02 % 0.05 % 0.08 % 0.27 % 0.34 %

This data was obtained between June 1990 and May 1991 frmn the AFS servers in the cs. cmu. edu eetl. The servers stored a total of

about 12GB of dara. The column entitled “Same User” gives the percentage of mutations in which the user performing the mutation was

the same as the one performing the immediately preceding mutation on the same file or dirtctory. The rernairting mutations contribute to

the column entitled “Different User”.

Table 2: Sequential Write-Sharing in AFS

Table 2 presents our observations over a period of twelve

months. The data is classified by volume type user

volumes containing private user data, project volumes used

for collaborative work, and system volumes containing

program binaries, libraries, header files and other similar

data. On average, a project volume has about 2600 files

and 280 directories, and a system volume has about 1600

files and 130 directories. User volumes tend to be smaller,

averaging about 200 files and 18 directories, because users

often place much of their data in their project volumes.

Table 2 shows that over 99% of all modifications were by

the previous writer, and that the chances of two different

users modifying the same object less than a day apart is at

most O.75’%O.We had expected to see the highest degree of

write-sharing on project files or directories, and were

surprised to see that it actually occurs on system files. We

conjecture that a significant fraction of this sharing arises

from modifications to system files by operators, who

change shift periodically. If system files are excluded, the

absence of write-sharing is even more striking: more than

99.5% of all mutations are by the previous writer, and the

chances of two different users modifying the same object

within a week are less than 0.4%! This data is highly

encouraging from the
replication. It suggests

serious problem if AFS

environment.

6. Related Work

point of view of optimistic

that conflicts would not be a

were replaced by Coda in our

Coda is unique in that it exploits caching for both
performance and high availability while preserving a high

degree of transparency. We are aware of no other system,

published or unpublished, that duplicates this key aspect of

coda.

By providing tools to link local and remote name spaces,

the Cedar file system [19] provided rudimentary support
for disconnected operation. But since this was not its

primary goal, Cedar did not provide support for hoarding,

transparent reintegration or conflict detection. Files wete

versioned and immutable, and a Cedar cache manager

could substitute a cached version of a file on reference to

an unqualified remote file whose server was inaccessible.

However, the implementor of Cedar observe that this

capability was not often exploited since remote files were

normally referenced by specific version number.

BitTell and Schroeder pointed out the possibility of

“stashing” data for availability in an early discussion of the

Echo file system [13]. However, a mo~ recent description

of Echo [8] indicates that it uses stashing only for the

highest levels of the naming hierarchy.

The FACE file system [3] uses stashing but does not

integrate it with caching. The lack of integration has at

least three negative consequences. First, it reduces

transparency because users and applications deal with two

different name spaces, with different consistency

properties. Second, utilization of local disk space is likely

to be much worse. Third, recent usage information from

cache management is not available to manage the stash.
The available literature on FACE does not report on how

much the lack of integration detracted from the usability of

the system.

The use of optimistic replication in distributed file systems

was pioneered by Locus [22]. Since Locus used a ~r-to-
peer model rather than a client-server model, availability

was achieved solely through server replication. There was

no notion of caching, and hence of disconnected operation.

Coda hzm benefited in a general sense from the large body

223

of work on transparency and performance in distributed file

systems. In particular, Coda owes much to AFS [18], from

which it inherits its model of trust and integrity, as well as

its mechanisms and design philosophy for scalability.

7. Future Work
Disconnected operation in Coda is a facility under active

development. In earlier sections of this paper we described

work in progress in the areas of log optimization,

granularity of reintegration, and evaluation of hoarding.

Much additional work is also being done at lower levels of

the system. In this section we consider two ways in which

the scope of our work maybe broadened.

An excellent opportunity exists in Coda for adding

transactional support to Unix. Explicit transactions

become more desirable as systems scale to hundreds or

thousands of nodes, and the informal concurrency control

of Unix becomes less effective. Many of the mechanisms

supporting disconnected operation, such as operation

logging, precedence graph maintenance, and conflict

checking would transfer directly to a transactional system

using optimistic concurrency control. Although

transactional file systems are not a new idea, no such

system with the scalability, availability, and performance

properties of Coda has been proposed or built.

A different opportunity exists in extending Coda to support

weakly-connected operation, in environments where

connectivity is intermittent or of low bandwidth. Such

conditions are found in networks that rely on voice-grade

lines, or that use wireless technologies such as packet

radio. The ability to mask failures, as provided by

disconnected operation, is of value even with weak

connectivity. But techniques which exploit and adapt to

the communication opportunities at hand are also needed.

Such techniques may include more aggressive write-back

policies, compressed network tmnsmission, partial file

transfer, and caching at intermediate levels.

8. Conclusion
Disconnected operation is a tantalizingly simple idea. All

one has to do is to pre-load one’s cache with critical data,

continue normal operation until disconnection, log all
changes made while disconnected, and replay them upon

reconnection.

Implementing disconnected operation is not so simple. It

involves major modifications and careful attention to detail

in many aspects of cache management. While hoarding, a

surprisingly large volume and variety of interrelated state

has to be maintained. When emulating, the persistence and

integrity of client data structures become critical. During

reintegration, there are dynamic choices to be made about

the granularity of reintegration.

Only in hindsight do we realize the extent to which

implementations of traditional caching schemes have been

simplified by the guaranteed presence of a lifeline to a

fiist-class replica. Purging and refetching on demand, a

strategy often used to handle pathological situations in

those implementations, is not viable when supporting

disconnected operation. However, the obstacles to

realizing disconnected operation are not insurmountable.

Rather, the central message of this paper is that

disconnected operation is indeed feasible, efficient and

usable.

One way to view our work is to regard it as an extension of

the idea of write-back caching. Whereas write-back

caching has hitherto been used for performance, we have

shown that it can be extended to mask temporary failures

too. A broader view is that disconnected operation allows

graceful transitions between states of autonomy and

interdependence in a distributed system. Under favorable

conditions, our approach provides all the benefits of remote

data access; under unfavorable conditions, it provides

continued access to critical data. We are certain that

disconnected operation will become increasingly important

as distributed systems grow in scale, diversity and

vulnerability.

Acknowledgments
We wish to thank Lily Mummert for her invaluable assistance in

collecting and postprocessing the file reference traces used in

Section 5.2, and Dimitris Varotsis, who helped instrument the

AFS servers which yielded the measurements of Section 5.3. We

also wish to express our appreciation to past and present

contributors to the Coda project, especially Puneet Kumar, Hank

Mashburn, Mmia Okasaki, and David Steere.

References

[1]

[2]

[3]

[4]

Burrows, M.

Eficient Data Sharing.
PhD thesis, University of Cambridge, Computer

Laboratory, December, 1988.

Cate, V., Gross, T.

Combiniig the Concepts of Compression and Caching for

a Two-Level File System.
In Proceedings of the 4th ACM Symposiam on

Architectural Support for Programming Languages
and Operating Systems. April, 1991.

COVZ L.L.

Resource Management in Federated Computing
Environments.

PhD thesis, Department of Computer Science, Princeton

University, October, 1990.

Davidson, S.B.

optimism rmd Consistency in Partitioned Distributed

Database Systems.
ACM Transactions on Database Systems 9(3), September,

1984.

224

[5]

[6]

/

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Davidson, S.B., Garcia-Molina, H., Skeen, D.

Consistency in Partitioned Networks.

ACM Computing Surveys 17(3), September, 1985.

Floyd, R.A.

Transparency in Distributed File Systems.

Technical Report TR 272, Department of Computer

Science, University of Rochester, 1989.

Gray, C. G., Cheriton, D.R.

Leases: An Efficient Fauk-Toleramt Mechanism for

Distributed File Cache Consistency.

In Proceedings of the 12th ACM Symposium on Operating
System Principles. December, 1989.

Hisgen, A., Birrell, A., Mann, T., Schroeder, M., Swart, G.

Availability and Consistency Tradeoffs in the Echo

Distributed File System.

In Proceedings of the Second Workshop on Workstation

Operating Systems. September, 1989.

Howard J.H., Kazar, M. L., Menees, S.G., Nichols, D.A.,

Satyanarayanan, M., Sidebotham, R.N., West, M.J.
Scale and Performance in a Distributed File System.

ACM Transactions on Computer Systems 6(l), February,

1988.

Kleiman, S.R.

Vnodes: An Architecture for Multiple File System Types

in sunUNIx.
InSummer Usenix Co~erence Proceedings. 1986.

Kumar, P., Satyanarayarmrt, M.

Log-Based Directory Resolution in the Coda File System.

Technical Report CMU-CS-91 -164, School of Computer
Science, Carnegie Mellon University, 1991.

Mashburn, H., Satyarwayanan, M.

RVM: Recoverable Virtual Memory User Manual

School of Computer Science, Carnegie Mellon University,

1991.

Needham, R.M., Herbert+ A.J.

Report on the Third European SIGOPS Workshop:

“Autonomy or Interdependence in Distributed

Systems”.
SIGOPS Review 23(2), April, 1989.

Ousterhou~ J., Da Costa, H., Harriso~ D., Kunze, J.,

Kupfer, M., Thompsou J.

A Trace-Driven Analysis of the 4.2BSD File System.

In Proceedings of the 10th ACM Symposium on Operating
System Principles. December, 1985.

Sandberg, R., Goldberg, D., Kleiman, S., Walsh D., LyotL

B.

Design and Implementation of the Sun Network

Filesystem.

In Summer Usenix Conference Proceedings. 1985.

Satyammayanan, M.

On the Influence of Scale in a Distributed System.

Itt Proceedings of the 10th International Conference on

Sofware Engineering. April, 1988.

Satyanarayanan, M.. Kistler, J.J., Kumsr, P., Okasski,

M. E., Siegel, E.H., Steere, D.C.
Coda A Highly Available File System for a Distributed

Workstation Environment.

IEEE Transactions on Computers 39(4], April, 1990.

[18] Satyanarayamq M.

Scalable, Secure, and Highly Available Distributed File

Access.

IEEE Computer 23(5), May, 1990.

[19] Schroeder, M.D., Gifford, D.K., Needham, R.M.

A Caching File System for a Programmer’s Workstation.
Jn Proceedings of the IOth ACM Symposium on Operating

System Principles. December, 1985.

[20] Steere, D.C., Kistler, J.J., Satyanarayanan, M.

Efficient User-Level Cache File Management on the Sun

Vnode Interface.

In Summer Usenix Conference Proceedings. June, 1990.

[21] Decorum File System

Transarc Corporation, 1990,

[22] Walker, B., Popek, G., English, R., Kline, C,, Thiel, G.

The LOCUS Distributed Operating System.

In Proceedings of the 9th ACM Symposium on Operating

System Principles. October, 1983.

225

