Disconnected Operation in the Coda File System

James J. Kistler and M. Satyanarayanan

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Disconnected operation is a mode of operation that enables
a client to continue accessing critical data during temporary
failures of a shared data repository. An important, though
not exclusive, application of disconnected operation is in
supporting portable computers. In this paper, we show that
disconnected operation is feasible, efficient and usable by
describing its design and implementation in the Coda File
System. The central idea behind our work is that caching of
data, now widely used for performance, can also be
exploited to improve availability.

1. Introduction

Every serious user of a distributed system has faced
situations where critical work has been impeded by a
remote failure. His frustration is particularly acute when
his workstation is powerful enough to be used standalone,
but has been configured to be dependent on remote
resources. An important instance of such dependence is the
use of data from a distributed file system.

Placing data in a distributed file system simplifies
collaboration between users, and allows them to delegate
the administration of that data. The growing popularity of
distributed file systems such as NFS [15] and AFS [18]
attests to the compelling nature of these considerations.
Unfortunately, the users of these systems have to accept the
fact that a remote failure at a critical juncture may seriously
inconvenicnce them.

This work was supported by the Defense Advanced Research Projects Agency
(Avionics Lab, Wright Research and Development Center, Aeronautical Systems
Division (AFSC), U.S. Air Force, Wright-Patterson AFB, Ohio, 45433-6543 under
Contract F33615-90-C-146S5, ARPA Order No. 7597), National Science Foundation
(PYI Award and Grant No. ECD 8907068), IBM Corporation (Faculty Development
Award, Graduate Fellowship, and Research Initiation Grant), Digital Equipment
Corporation (Extemal Research Project Grant), and Bellcore (Information
Networking Research Grant).

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by peimission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© 1991 ACM 0-89791-447-3/91/00098/0213...$1.50

213

How can we improve this state of affairs? Ideally, we
would like to enjoy the benefits of a shared data repository,
but be able to continue critical work when that repository is
inaccessible. We call the latter mode of operation
disconnected operation, because it represents a temporary
deviation from normal operation as a client of a shared

repository.

In this paper we show that disconnected operation in a file
system is indeed feasible, efficient and usable. The central
idea behind our work is that caching of data, now widely
used to improve performance, can also be exploited to
enhance availability. We have implemented disconnected
operation in the Coda File System at Carnegiec Mellon
University.

Our initial experience with Coda confirms the viability of
disconnected operation. We have successfully operated
disconnected for periods lasting four to five hours. For a
disconnection of this duration, the process of reconnecting
and propagating changes typically takes about a minute. A
local disk of 100MB has been adequate for us during these
periods of disconnection. Trace-driven simulations
indicate that a disk of about half that size should be
adequate for disconnections lasting a typical workday.

2. Design Overview

Coda is designed for an environment consisting of a large
collection of untrusted Unix! clients and a much smaller
number of trusted Unix file servers. The design is
optimized for the access and sharing patterns typical of
academic and research environments. It is specifically not
intended for applications that exhibit highly concurrent,
fine granularity data access.

Each Coda client has a local disk and can communicate
with the servers over a high bandwidth network. At certain
times, a client may be. temporarily unable to communicate
with some or all of the servers. This may be due to a server
or network failure, or due to the detachment of a portable
client from the network.

1Unix is a trademark of AT&T.

x=12 x=12 x=12

x=87

7
.

x=8

L@

x=12
x=45 x=45 x=45

x=87

x=33 x=87 x=87

x=4S | L‘Eb S :
%545 x=4
x=45
()

(e)

(d)

Three servers (mahler, vivaldi, and ravel) have replicas of the volume containing file x. This file is potentially of interest to users at three
clients (flute, viola, and harp). Flute is capable of wireless communication (indicated by 2 dotted line) as well as regular network
communication. Proceeding clockwise, the steps above show the value of x seen by each node as the connectivity of the system changes.

Note that in step (d), flute is operating disconnected.

Figure 1: How Disconnected Operation Relates to Server Replication

Clients view Coda as a single, location-transparent shared
Unix file system. The Coda namespace is mapped to
individual file servers at the granularity of subtrees called
volumes. At each client, a cache manager (Venus)
dynamically obtains and caches volume mappings.

Coda uses two distinct, but complementary, mechanisms to
achieve high availability. The first mechanism, server
replication, allows volumes to have read-write replicas at
more than one server. The set of replication sites for a
volume is its volume storage group (VSG). The subset of a
VSG that is currently accessible is a client’s accessible
VSG (AVSG). The performance cost of server replication is
kept low by caching on disks at clients and through the use
of parallel access protocols. Venus uses a cache coherence
protocol based on callbacks [9] to guarantee that an open of
a file yields its latest copy in the AVSG. This guarantee is
provided by servers notifying clients when their cached
copies are no longer valid, each notification being referred
to as a "callback break." Modifications in Coda are
propagated in parallel to all AVSG sites, and eventually to
missing VSG sites.

Disconnected operation, the second high availability
mechanism used by Coda, takes effect when the AVSG
becomes empty. While disconnected, Venus services file
system requests by relying solely on the contents of its

214

cache. Since cache misses cannot be serviced or masked,
they appear as failures to application programs and users.
When disconnection ends, Venus propagates modifications
and reverts to server replication. Figure 1 depicts a typical
scenario involving transitions between server replication
and disconnected operation.

Earlier Coda papers[17,18] have described server
replication in depth. In contrast, this paper restricts its
attention to disconnected operation. We discuss server
replication only in those arcas where its presence has
significantly influenced our design for disconnected
operation.

3. Design Rationale

At a high level, two factors influenced our strategy for high
availability. First, we wanted to use conventional, off-the-
shelf hardware throughout our system. Second, we wished
to preserve transparency by seamlessly integrating the high
availability mechanisms of Coda into a normal Unix
environment.

At a more detailed level, other considerations influenced
our design. These include the need to scale gracefully, the
advent of portable workstations, the very different
resource, integrity, and security assumptions made about

clients and servers, and the need to strike a balance
between availability and consistency. We examine each of
these issues in the following sections.

3.1. Scalability

Successful distributed systems tend to grow in size. Our
experience with Coda’s ancestor, AFS, had impressed upon
us the need to prepare for growth a priori, rather than
treating it as an afterthought [16]. We brought this
experience to bear upon Coda in two ways. First, we
adopted certain mechanisms that enhance scalability.
Second, we drew upon a set of general principles to guide
our design choices.

An example of a mechanism we adopted for scalability is
callback-based cache coherence. Another such mechanism,
whole-file caching, offers the added advantage of a much
simpler failure model: a cache miss can only occur on an
open, never on a read, write, seek, or close. This,
in turn, substantially simplifies the implementation of
disconnected operation. A partial-file caching scheme such
as that of AFS-4 [21], Echo [8] or MFS [1] would have
complicated our implementation and made disconnected
operation less transparent.

A scalability principle that has had considerable influence
on our design is the placing of functionality on clients
rather than servers. Only if integrity or security would
have been compromised have we violated this principle.
Another scalability principle we have adopted is the
avoidance of system-wide rapid change. Consequently, we
have rejected strategies that require election or agreement
by large numbers of nodes. For example, we have avoided
algorithms such as that used in Locus [22] that depend on
nodes achieving consensus on the current partition state of
the network.

3.2. Portable Workstations

Powerful, lightweight and compact laptop computers are
commonplace today. It is instructive to observe how a
person with data in a shared file system uses such a
machine. Typically, he identifies files of interest and
downloads them from the shared file system into the local
name space for use while isolated. When he returns, he
copies modified files back into the shared file system.
Such a user is effectively performing manual caching, with
write-back upon reconnection!

Early in the design of Coda we realized that disconnected
operation could substantially simplify the use of portable
clients. Users would not have to use a different name space
while isolated, nor would they have to manually propagate
changes upon reconnection. Thus portable machines are a
champion application for disconnected operation.

215

The use of portable machines also gave us another insight.
The fact that people are able to operate for extended
periods in isolation indicates that they are quite good at
predicting their future file access needs. This, in turn,
suggests that it is reasonable to seck user assistance in
augmenting the cache management policy for disconnected
operation.

Functionally, involuntary disconnections caused by failures
are no different from voluntary disconnections caused by
unplugging portable computers. Hence Coda provides a
single mechanism to cope with all disconnections. Of
course, there may be qualitative differences: user
expectations as well as the extent of user cooperation are
likely to be different in the two cases.

3.3. First vs Second Class Replication

If disconnected operation is feasible, why is server
replication needed at all? The answer to this question
depends critically on the very different assumptions made
about clients and servers in Coda.

Clients are like appliances: they can be turned off at will
and may be unattended for long periods of time. They have
limited disk storage capacity, their software and hardware
may be tampered with, and their owners may not be
diligent about backing up the local disks. Servers are like
public utilities: they have much greater disk capacity, they
are physically secure, and they are carefully monitored and
administered by professional staff.

It is therefore appropriate to distinguish between first class
replicas on servers, and second class replicas (i.e., cache
copies) on clients. First class replicas are of higher quality:
they are more persistent, widely known, secure, available,
complete and accurate. Second class replicas, in contrast,
are inferior along all these dimensions. Only by periodic
revalidation with respect to a first class replica can a
second class replica be useful.

The function of a cache coherence protocol is to combine
the performance and scalability advantages of a second
class replica with the quality of a first class replica. When
disconnected, the quality of the second class replica may be
degraded because the first class replica upon which it is
contingent is inaccessible. The longer the duration of
disconnection, the greater the potential for degradation.
Whereas server replication preserves the quality of data in
the face of failures, disconnected operation forsakes quality
for availability. Hence server replication is important
because it reduces the frequency and duration of
disconnected operation, which is properly viewed as a
measure of last resort.

Server replication is expensive because it requires
additional hardware. Disconnected operation, in contrast,

costs little. Whether to use server replication or not is thus
a tradeoff between quality and cost. Coda does permit a
volume to have a sole server replica. Therefore, an
installation can rely exclusively on disconnected operation
if it so chooses.

3.4. Optimistic vs Pessimistic Replica Control

By definition, a network partition exists between a
disconnected second class replica and all its first class
associates. The choice between two families of replica
control strategies, pessimistic and optimistic [5], is
therefore central to the design of disconnected operation.
A pessimistic strategy avoids conflicting operations by
disallowing all partitioned writes or by restricting reads and
writes to a single partition. An optimistic strategy provides
much higher availability by permitting reads and writes
everywhere, and deals with the attendant danger of
conflicts by detecting and resolving them after their
occurence.

A pessimistic approach towards disconnected operation
would require a client to acquire shared or exclusive
control of a cached object prior to disconnection, and to
retain such control until reconnection. Possession of
exclusive control by a disconnected client would preclude
reading or writing at all other replicas. Possession of
shared control would allow reading at other replicas, but
writes would still be forbidden everywhere.

Acquiring control prior to voluntary disconnection is
relatively simple. It is more difficult when disconnection is
involuntary, because the system may have to arbitrate
among multiple requestors. Unfortunately, the information
needed to make a wise decision is not readily available.
For example, the system cannot predict which requestors
will actually use the object, when they will release control,
or what the relative costs of denying them access would be.

Retaining control until reconnection is acceptable in the
case of brief disconnections. But it is unacceptable in the
case of extended disconnections. A disconnected client
with shared control of an object would force the rest of the
system to defer all updates until it reconnected. With
exclusive control, it would even prevent other users from
making a copy of the object. Coercing the client to
reconnect may not be feasible, since its whereabouts may
not be known. Thus, an entire user community could be at
the mercy of a single errant client for an unbounded
amount of time.

Placing a time bound on exclusive or shared control, as
done in the case of leases [7], avoids this problem but
introduces others. Once a lease expires, a disconnected
client loses the ability to access a cached object, even if no
else in the system is interested in it. This, in tum, defeats

216

the purpose of disconnected operation which is to provide
high availability. Worse, updates already made while
disconnected have to be discarded.

An optimistic approach has its own disadvantages. An
update made at one disconnected client may conflict with
an update at another disconnected or connected client. For
optimistic replication to be viable, the system has to be
more sophisticated. There needs to be machinery in the
system for detecting conflicts, for automating resolution
when possible, and for confining damage and preserving
evidence for manual repair. Having to repair conflicts
manually violates transparency, is an annoyance to users,
and reduces the usability of the system.

We chose optimistic replication because we felt that its
strengths and weaknesses better matched our design goals.
The dominant influence on our choice was the low degree
of write-sharing typical of Unix. This implied that an
optimistic strategy was likely to lead to relatively few
conflicts. An optimistic strategy was also consistent with
our overall goal of providing the highest possible
availability of data.

In principle, we could have chosen a pessimistic strategy
for server replication even after choosing an optimistic
strategy for disconnected operation. But that would have
reduced transparency, because a user would have faced the
anomaly of being able to update data when disconnected,
but being unable to do so when connected to a subset of the
servers. Further, many of the previous arguments in favor
of an optimistic strategy also apply to server replication.

Using an optimistic strategy throughout presents a uniform
model of the system from the user’s perspective. At any
time, he is able to read the latest data in his accessible
universe and his updates are immediately visible to
everyone ¢lse in that universe. His accessible universe is
usually the entire set of servers and clients. When failures
occur, his accessible universe shrinks to the set of servers
he can contact, and the set of clients that they, in turn, can
contact. In the limit, when he is operating disconnected,
his accessible universe consists of just his machine. Upon
reconnection, his updates become visible throughout his
now-enlarged accessible universe.

4. Detailed Design and Implementation

In describing our implementation of disconnected
operation, we focus on the client since this is where much
of the complexity lies. Section 4.1 describes the physical
structure of a client, Section 4.2 introduces the major states
of Venus, and Sections 4.3 to 4.5 discuss these states in
detail. A description of the server support needed for
disconnected operation is contained in Section 4.5.

4.1. Client Structure

Because of the complexity of Venus, we made it a user
level process rather than part of the kernel. The latter
approach may have yiclded better performance, but would
have been less portable and considerably more difficult to
debug. Figure 2 illustrates the high-level structure of a
Coda client.

lication
to Coda
servers

Venus

System Call interface

Figure 2: Structure of a Coda Client

Venus intercepts Unix file system calls via the widely-used
Sun Vnode interface [10]. Since this interface imposes a
heavy performance overhead on user-level cache managers,
we use a tiny in-kemmel MiniCache to filter out many
kernel-Venus interactions. The MiniCache contains no
support for remote access, disconnected operation or server
replication; these functions are handled entirely by Venus.

A system call on a Coda object is forwarded by the Vnode
interface to the MiniCache. If possible, the call is serviced
by the MiniCache and control is returned to the application.
Otherwise, the MiniCache contacts Venus to service the
call. This, in turn, may involve contacting Coda servers.
Control returns from Venus via the MiniCache to the
application program, updating MiniCache state as a side
effect. MiniCache state changes may also be initiated by
Venus on events such as callback breaks from Coda
servers. Measurements from our implementation confirm
that the MiniCache is critical for good performance [20].

4.2. Venus States

Logically, Venus operates in one of three states: hoarding,
emulation, and reintegration. Figure 3 depicts these states
and the transitions between them. Venus is normally in the
hoarding state, relying on server replication but always on
the alert for possible disconnection. Upon disconnection, it
enters the emulation state and remains there for the
duration of disconnection. Upon reconnection, Venus
enters the reintegration state, resynchronizes its cache with
its AVSG, and then reverts to the hoarding state. Since all
volumes may not be replicated across the same set of
servers, Venus can be in different states with respect to

217

different volumes, depending on failure conditions in the
system.

Hoarding

Reintegratio

physical
reconnection

When disconnected, Venus is in the emulation state. It
transits to reintegration upon successful reconnection to
an AVSG member, and thence to hoarding, where it
resumes connected operation.

Figure 3: Venus States and Transitions

4.3. Hoarding

The hoarding state is so named because a key responsibility
of Venus in this state is to hoard useful data in anticipation
of disconnection. = However, this is not its only
responsibility. Rather, Venus must manage its cache in a
manner that balances the needs of connected and
disconnected operation. For instance, a user may have
indicated that a certain set of files is critical but may
currently be using other files. To provide good
performance, Venus must cache the latter files. But to be
prepared for disconnection, it must also cache the former
set of files.

Many factors complicate the implementation of hoarding:

e File reference behavior, especially in the
distant future, cannot be predicted with
certainty.

¢ Disconnections and reconnections are often
unpredictable.

eThe true cost of a cache miss while
disconnected is highly variable and hard to
quantify.

e Activity at other clients must be accounted for,
so that the latest version of an object is in the
cache at disconnection.

« Since cache space is finite, the availability of
less critical objects may have to be sacrificed
in favor of more critical objects.
To address these concerns, we manage the cache using a
prioritized algorithm, and periodically reevaluate which
objects merit retention in the cache via a process known as
hoard walking.

Personal files # X11 files # Venus source files

a /coda/usr/jjik d+ # (from X11 maintainer) # (shared among Coda developers}

a /coda/usr/jjk/papers 100:d+ a /usr/X11/bin/X a /coda/project/coda/src/venus 100:c+

a /coda/usr/Jjk/papers/sosp 1000:d+ a /usr/X1ll/bin/Xvga a /coda/project/coda/include 100:c+
a /usr/X11/bin/mwm a /coda/project/coda/lib c+

System files a /usr/X1l/bin/startx

a /usr/bin 100:d+ a /usr/X11/bin/xclock

a /usr/etc 100:d+ a /usr/X11/bin/xinit (C)

a /usr/include 100:d4+ a /usr/X1l/bin/xterm

a /usr/lib 100:d+ a /usr/X1l/include/X1l/bitmaps c+

a /usr/local/gnu d+ a /usr/X11/lib/app~defaults d+

a /usr/local/rcs d+ a /usr/X11/1lib/fonts/misc c+

a /usr/ucb d+ a /usr/Xll/lib/system.mwmrc

(@)

®

These are typical hoard profiles provided by a Coda user, an application maintainer, and a group of project developers. Each profile is
interpreted separately by the HDB front-end program. The 'a’ at the beginning of a line indicates an add-entry command. Other
commands are delete an entry, clear all entries, and list entries. The modifiers following some pathnames specify non-default priorities
(the default is 10) and/or meta-expansion for the entry. Note that the pathnames beginning with */usr’ are actually symbolic links into

*fcoda’.

Figure 4: Sample Hoard Profiles -

4.3.1. Prioritized Cache Management

Venus combines implicit and explicit sources of
information in its priority-based cache management
algorithm. The implicit information consists of recent
reference history, as in traditional caching algorithms.
Explicit information takes the form of a per-workstation
hoard database (HDB), whose entries are pathnames
identifying objects of interest to the user at that
workstation.

A simple front-end program allows a user to update the
HDB using command scripts called hoard profiles, such as
those shown in Figure 4. Since hoard profiles are just files,
it is simple for an application maintainer to provide a
common profile for his users, or for users collaborating on
a project to maintain a common profile. A user can
customize his HDB by specifying different combinations of
profiles or by executing front-end commands interactively.
To facilitate constraction of hoard profiles, Venus can
record all file references observed between a pair of start
and stop events indicated by a user.

To reduce the verbosity of hoard profiles and the effort
needed to maintain them, Venus supports meta-expansion
of HDB entries. As shown in Figure 4, if the letter ¢’ (or
’d’) follows a pathname, the command also applics to
immediate children (or all descendants). A ’+° following
the ’¢c’ or 'd’ indicates that the command applies to all
future as well as present children or descendents. A hoard
entry may optionally indicate a hoard priority, with higher
priorities indicating more critical objects.

The current priority of a cached object is a function of its
hoard priority as well as a metric representing recent usage.
The latter is updated continuously in response to new
references, and serves to age the priority of objects no
longer in the working set. Objects of the lowest priority
are chosen as victims when cache space has to be
reclaimed.

218

To resolve the pathname of a cached object while
disconnected, it is imperative that all the ancestors of the
object also be cached. Venus must therefore ensure that a
cached directory is not purged before any of its
descendants. This hierarchical cache management is not
needed in traditional file caching schemes because cache
misses during name translation can be serviced, albeit at a
performance cost. Venus performs hierarchical cache
management by assigning infinite priority to directories
with cached children. This automatically forces
replacement to occur bottom-up.

4.3.2. Hoard Walking

We say that a cache is in equilibrium, signifying that it
meets user expectations about availability, when no
uncached object has a higher priority than a cached object.
Equilibrium may be disturbed as a result of normal activity.
For example, suppose an object, A, is brought into the
cache on demand, replacing an object, B. Further suppose
that B is mentioned in the HDB, but A is not. Some time
after activity on A ceases, its priority will decay below the
hoard priority of B. The cache is no longer in equilibrium,
since the cached object A has lower priority than the
uncached object B.

Venus periodically restores equilibrium by performing an
operation known as a hoard walk. A hoard walk occurs
every 10 minutes in our current implementation, but one
may be explicitly requested by a user prior to voluntary
disconnection. The walk occurs in two phases. First, the
name bindings of HDB entries are reevaluated to reflect
update activity by other Coda clients. For example, new
children may have been created in a directory whose
pathname is specified with the "+ option in the HDB.
Second, the priorities of all entries in the cache and HDB
are reevaluated, and objects fetched or evicted as needed to
restore equilibrium.

Hoard walks also address a problem arising from callback
breaks. In traditional callback-based caching, data is
refetched only on demand after a callback break. But in
Coda, such a strategy may result in a critical object being
unavailable should a disconnection occur before the next
reference to it. Refetching immediately upon callback
break avoids this problem, but ignores a key characteristic
of Unix environments: once an object is modified, it is
likely to be modified many more times by the same user
within a short interval [14,6]. An immediate refetch
policy would increase client-server traffic considerably,
thereby reducing scalability.

Our strategy is a compromise that balances availability,
consistency, and scalability. For files and symbolic links,
Venus purges the object on callback break, and refetches it
on demand or during the next hoard walk, whichever
occurs earlier. If a disconnection were to occur before
refetching, the object would be unavailable. For
directories, Venus does not purge on callback break, but
marks the cache entry suspicious. A stale cache entry is
thus available should a disconnection occur before the next
hoard walk or reference. The acceptability of stale
directory data follows from its particular callback
semantics. A callback break on a directory typically means
that an entry has been added to or deleted from the
directory. It is often the case that other directory entries
and the objects they name are unchanged. Therefore,
saving the stale copy and using it in the event of untimely
disconnection causes consistency to suffer only a little, but
increases availability considerably.

4.4, Emulation

In the emulation state, Venus performs many actions
normally handled by servers. For example, Venus now
assumes full responsibility for access and semantic checks.
It is also responsible for generating temporary file
identifiers (fids) for new objects, pending the assignment of
permanent fids at reintegration. But although Venus is
functioning as a pseudo-server, updates accepted by it have
to be revalidated with respect to integrity and protection by
real servers. This follows from the Coda policy of trusting
only servers, not clients. To minimize unpleasant delayed
surprises for a disconnected user, it behooves Venus to be
as faithful as possible in its emulation.

Cache management during emulation is done with the same
priority algorithm used during hoarding. Mutating
operations directly update the cache entries of the objects
involved. Cache entries of deleted objects are freed
immediately. but those of other modified objects assume
infinite priority so that they are not purged before
reintegration. On a cache miss, the default behavior of
Venus is to return an error code. A user may optionally
request Venus to block his processes until cache misses can
be serviced.

219

4.4.1. Logging

During emulation, Venus records sufficient information to
replay update activity when it reintegrates. It maintains
this information in a per-volume log of mutating operations
called a replay log. Each log entry contains a copy of the
corresponding system call arguments as well as the version
state of all objects referenced by the call.

Venus uses a number of optimizations to reduce the length
of the replay log, resulting in a log size that is typically a
few percent of cache size. A small log conserves disk
space, a critical resource during periods of disconnection.
It also improves reintegration performance by reducing
latency and server load.

One important optimization to reduce log length pertains to
write operations on files. Since Coda uses whole-file
caching, the close after an open of a file for
modification installs a completely new copy of the file.
Rather than logging the open, close, and intervening
write operations individually, Venus logs a single
store record during the handling of a close.

Another optimization consists of Venus discarding a
previous store record for a file when a new one is
appended to the log. This follows from the fact that a
store renders all previous versions of a file superfluous.
The store record does not contain a copy of the file’s
contents, but merely points to the copy in the cache.

We are currently implementing two further optimizations
to reduce the length of the replay log. The first generalizes
the optimization described in the previous paragraph such
that any operation which overwrites the effect of earlier
operations may cancel the corresponding log records. An
example would be the cancelling of a store by a
subsequent unlink or truncate. The second
optimization exploits knowledge of inverse operations to
cancel both the inverting and inverted log records. For
example, a rmdir may cancel its own log record as well
as that of the corresponding mkdir.

4.4.2, Persistence

A disconnected user must be able to restart his machine
after a shutdown and continue where he left off. In case of
a crash, the amount of data lost should be no greater than if
the same failure occurred during connected operation. To
provide these guarantees, Venus must keep its cache and
related data structures in non-volatile storage.

Meta-data, consisting of cached directory and symbolic
link contents, status blocks for cached objects of all types,
replay logs, and the HDB, is mapped mnto Venus’ address
space as recoverable virtual memory (RVM).
Transactional access to this memory is supported by the
RVM library {12] linked into Venus. The actual contents

of cached files are not in RVM, but are stored as local Unix
files.

The use of transactions to manipulate meta-data simplifies
Venus® job enormously. To maintain its invariants Venus
need only ensure that each transaction takes meta-data from
one consistent state to another. It need not be concerned
with crash recovery, since RVM handles this transparently.
If we had chosen the obvious alternative of placing meta-
data in local Unix files, we would have had to follow a
strict discipline of carefully timed synchronous writes and
an ad-hoc recovery algorithm,

RVM supports local, non-nested transactions and allows’

independent control over the basic transactional properties
of atomicity, permanence, and serializability. An
application can reduce commit latency by labelling the
commit as no-flush, thereby avoiding a synchronous write
to disk. To ensure persistence of no-flush transactions, the
application must explicitly flush RVM’s write-ahead log
from time to time. When used in this manner, RVM
provides bounded persistence, where the bound is the
period between log flushes.

Venus exploits the capabilities of RVM to provide good
performance at a constant level of persistence. When
hoarding, Venus initiates log flushes infrequently, since a
copy of the data is available on servers. Since servers are
not accessible when emulating, Venus is more conservative
and flushes the log more frequently. This lowers
performance, but keeps the amount of data lost by a client
crash within acceptable limits.

4.4.3. Resource Exhaustion

It is possible for Venus to exhaust its non-volatile storage
during emulation. The two significant instances of this are
the file cache becoming filled with modified files, and the
RVM space allocated to replay logs becoming full.

Our current implementation is not very graceful in
handling these situations. When the file cache is full, space
can be freed by truncating or deleting modified files.
When log space is full, no further mutations are allowed
until reintegration has been performed. Of course, non-
mutating operations are always allowed.

We plan to explore at least three alternatives to free up disk
space while emulating. One possibility is to compress file
cache and RVM contents. Compression trades off
computation time for space, and recent work [2] has shown
it to be a promising tool for cache management. A second
possibility is to allow users to selectively back out updates
made while disconnected. A third approach is to allow
portions of the file cache and RVM to be written out to
removable media such as floppy disks.

220

4.5. Reintegration

Reintegration is a transitory state through which Venus
passes in changing roles from pseudo-server to cache
manager. In this state, Venus propagates changes made
during emulation, and updates its cache to reflect current
server state. Reintegration is performed a volume at a time,
with all update activity in the volume suspended until
completion.

4.5.1. Replay Algorithm

The propagation of changes from client to AVSG is
accomplished in two steps. In the first step, Venus obtains
permanent fids for new objects and uses them to replace
temporary fids in the replay log. This step is avoided in
many cases, since Venus obtains a small supply of
permanent fids in advance of need, while in the hoarding
state, In the second step, the replay log is shipped in
parallel to the AVSG, and executed independently at each
member. Each server performs the replay within a single
transaction, which is aborted if any error is detected.

The replay algorithm consists of four phases. In phase one
the log is parsed, a transaction is begun, and all objects
referenced in the log are locked. In phase two, each
operation in the log is validated and then executed. The
validation consists of conflict detection as well as integrity,
protection, and disk space checks. Except in the case of
store operations, execution during replay is identical o
execution in connected mode. For a store, an empty
shadow file is created and meta-data is updated to reference
it, but the data transfer is deferred. Phase three consists
exclusively of performing these data transfers, a process
known as back-fetching. The final phase commits the
transaction and releases all locks.

If reintegrations succeeds, Venus frees the replay log and
resets the priority of cached objects referenced by the log.
If reintegration fails, Venus writes out the replay log to a
local replay file in a superset of the Unix tar format. The
log and all corresponding cache entries are then purged, so
that subsequent references will cause refetch of the current
contents at the AVSG. A tool is provided which allows the
user to inspect the contents of a replay file, compare it to
the state at the AVSG, and replay it selectively or in its
entirety.

Reintegration at finer granularity than a volume would
reduce the latency perceived by clients, improve
concurrency and load balancing at servers, and reduce user
effort during manual replay. To this end, we are revising
our implementation to reintegrate at the granularity of
subsequences of dependent operations within a volume.
Dependent subsequences can be identified using the
precedence graph approach of Davidson [4]. In the revised
implementation Venus will maintain precedence graphs
during emulation, and pass them to servers along with the
replay log.

4.5.2. Conflict Handling

Our use of optimistic replica control means that the
disconnected operations of one client may conflict with
activity at servers or other disconnected clients. The only
class of conflicts we are concemed with are write/write
conflicts. Read/write conflicts are not relevant to the Unix
file system model, since it has no notion of atomicity
beyond the boundary of a single system call.

The check for conflicts relies on the fact that each replica
of an object is tagged with a storeid that uniquely identifies
the last update to it. During phase two of replay, a server
compares the storeid of every object mentioned in a log
entry with the storeid of its own replica of the object. If the
comparison indicates equality for all objects, the operation
is performed and the mutated objects are tagged with a new
storeid specified in the log entry.

If a storeid comparison fails, the action taken depends on
the operation being validated. In the case of a store of a
file, the entire reintegration is aborted. But for directories,
a conflict is declared only if a newly created name collides
with an existing name, if an object updated at the client or
the server has been deleted by the other, or if directory
attributes have been modified at the server and the client.
This strategy of resolving partitioned directory updates is
consistent with our strategy in server replication [11], and
was originally suggested by Locus [22].

Our original design for disconnected operation called for
preservation of replay files at servers rather than clients.
This approach would also allow damage to be confined by
marking conflicting replicas inconsistent and forcing
manual repair, as is currently done in the case of server
replication. We are awaiting more usage experience to
determine whether this is indeed the correct approach for
disconnected operation.

5. Status and Evaluation

Today, Coda runs on IBM RTs, Decstation 3100s and
5000s, and 386-based laptops such as the Toshiba 5200. A
small user community has been using Coda on a daily basis
as its primary data repository since April 1990. All
development work on Coda is done in Coda itself. As of
July 1991 there were nearly 350MB of triply-replicated
data in Coda, with plans to expand to 2GB in the next few
montbhs,

A version of disconnected operation with minimal
functionality was demonstrated in October 1990. A more
complete version was functional in January 1991, and is
now in regular use. We have successfully operated
disconnected for periods lasting four to five hours. Our
experience with the system has been quite positive, and we
are confident that the refinements under development will
result in an even more usable system.

221

In the following sections we provide qualitative and
quantitative answers to three important questions
pertaining to disconnected operation. These are:

1. How long does reintegration take?

2. How large a local disk does one need?

3. How likely are conflicts?

5.1. Duration of Reintegration

In our experience, typical disconnected sessions of editing
and program development lasting a few hours require about
a minute for reintegration. To characterize reintegration
speed more precisely, we measured the reintegration times
after disconnected execution of two well-defined tasks.
The first task is the Andrew benchmark [9], now widely
used as a basis for comparing file system performance.
The second task is the compiling and linking of the current
version of Venus. Table 1 presents the reintegration times
for these tasks.

The time for reintegration consists of three components:
the time to allocate permanent fids, the time for the replay
at the servers, and the time for the second phase of the
update protocol used for server replication. The first
component will be zero for many disconnections, due to
the preallocation of fids during hoarding. We expect the
time for the second component to fall, considerably in
many cases, as we incorporate the last of the replay log
optimizations described in Section 4.4.1. The third
component can be avoided only if server replication is not
used.

One can make some interesting secondary observations
from Table 1. First, the total time for reintegration is
roughly the same for the two tasks even though the Andrew
benchmark has a much smaller elapsed time. This is
because the Andrew benchmark uses the file system more
intensively. Second, reintegration for the Venus make
takes longer, even though the number of entries in the
replay log is smaller. This is because much more file data
is back-fetched in the third phase of the replay. Finally,
neither task involves any think time. As a result, their
reintegration times are comparable to that after a much
longer, but more typical, disconnected session in our
environment.

5.2. Cache Size

A local disk capacity of 100MB on our clients has proved
adequate for our initial sessions of disconnected operation.
To obtain a better understanding of the cache size
requirements for disconnected operation, we analyzed file
reference traces from our environment. The traces were
obtained by instrumenting workstations to record
information on every file system operation, regardless of
whether the file was in Coda, AFS, or the local file system.

Elapsed Time Reintegration Time (seconds) Size of Replay Log |pata Back-Fetched
(seconds) Total | AllocFid| Replay | COP2 Records Bytes (Bytes)
And
Bmth::,k 288(3) |43 | 4 |29 [0]| 223 65,010 1,141,315
Venus
Make 3271 (28) |52 | 1@ |40Q) [103)| 193 65,919 2,990,120

This data was obtained with a Toshiba T5200/100 client (12MB memory, 100MB disk) reintegrating over an Ethemet with an IBM
RT-APC server (12MB memory, 400MB disk). The values shown above are the means of three trials. Figures in parentheses are

standard deviations.

Table 1: Time for Reintegration

Our analysis is based on simulations driven by these traces.
Writing and validating a simulator that precisely models
the complex caching behavior of Venus would be quite
difficult. To avoid this difficulty, we have modified Venus
to act as its own simulator. When running as a simulator,
Venus is driven by traces rather than requests from the
kernel. Code to communicate with the servers, as well
code to perform physical I/O on the local file system are
stubbed out during simulation.

s0r
weee Max
40 - = Avg
----- Min
30

High-Water Mark (megabytes)
N
QQ

-
o

0 2 4 6 8 10 12
Time (hours)

This graph is based on a total of 10 traces from 5 active
Coda workstations. The curve labelled "Avg"
corresponds to the values obtained by averaging the
high-water marks of all workstations. The curves
labelled "Max" and "Min" plot the highest and lowest
values of the high-water marks across all workstations.
Note that the high-water mark does not include space
needed for paging, the HDB or replay logs.

Figure 5: High-Water Mark of Cache Usage

Figure 5 shows the high-water mark of cache usage as a
function of time. The actual disk size needed for
disconnected operation has to be larger, since both the
explicit and implicit sources of hoarding information are
imperfect. From our data it appears that a disk of
50-60MB should be adequate for operating disconnected
for a typical workday. Of course, user activity that is
drastically different from what was recorded in our traces
could produce significantly different results.

222

We plan to extend our work on trace-driven simulations in
three ways. First, we will investigate cache size
requirements for much longer periods of disconnection.
Second, we will be sampling a broader range of user
activity by obtaining traces from many more machines in
our environment. Third, we will evaluate the effect of
hoarding by simulating traces together with hoard profiles
that have been specified ex ante by users.

5.3. Likelihood of Conflicts

In our use of optimistic server replication in Coda for
nearly a year, we have seen virtually no conflicts due to
multiple users updating an object in different network
partitions. While gratifying to us, this observation is
subject to at least three criticisms. First, it is possible that
our users are being cautious, knowing that they are dealing
with an experimental system. Second, perhaps conflicts
will become a problem only as the Coda user community
grows larger. Third, perhaps extended voluntary
disconnections will lead to many more conflicts.

To obtain data on the likelihood of conflicts at larger scale,
we instrumented the AFS servers in our environment.
These servers are used by over 400 computer science
faculty, staff and graduate students for research, program
development, and education. Their usage profile includes a
significant amount of collaborative activity. Since Coda is
descended from AFS and makes the same kind of usage
assumptions, we can use this data to estimate how frequent
conflicts would be if Coda were to replace AFS in our
environment,

Every time a user modifies an AFS file or directory, we
compare his identity with that of the user who made the
previous mutation. We also note the time interval between
mutations. For a file, only the close after an open for
update is counted as a mutation; individual write
operations are not counted. For directories, all operations
that modify a directory are counted as mutations.

Different User
Type of | Number of| Type of Total s U
P Mutati ame User)
Volume | Volumes Object utations Total |<imin |<10min| <ibr |<1dsy | <1wk
U Files 3,287,135 99.87 % 013% | 0.04 % 0.05 % 0.06% | 0.09% | 0.09%
ser 52 | Direcories | 4132066 | 99.50% | 020% | 004% | 007% | 0.10% | 015% | 0.16%
Proiect 108 Files 4,437,311 99.66 % 034% [017% | 025% | 026% | 028% | 0.30 %
ojec , .
¥ Directories | 5,391,224 963% | 037% | 000% | 001% | 0.03% | 009% | 015%
198 Files 5,526,700 99.17 % 083% | 006% | 018% | 042% | 072% | 078 %
System
¥s Directories 4,338,507 99.54% | 046% | 002% | 005% | 0.08% | 027% | 034%

This data was obtained between June 1990 and May 1991 from the AFS servers in the ¢s. cmu. edu cell. The servers stored a total of
about 12GB of data. The column entitled "Same User" gives the percentage of mutations in which the user performing the mutation was
the same as the one performing the immediately preceding mutation on the same file or directory. The remaining mutations contribute to

the column entitled "Different User".

Table 2: Sequential Write-Sharing in AFS

Table 2 presents our observations over a period of twelve
months. The data is classified by volume type: wuser
volumes containing private user data, project volumes used
for collaborative work, and system volumes containing
program binaries, libraries, header files and other similar
data. On average, a project volume has about 2600 files
and 280 directories, and a system volume has about 1600
files and 130 directories. User volumes tend to be smaller,
averaging about 200 files and 18 directories, because users
often place much of their data in their project volumes.

Table 2 shows that over 99% of all modifications were by
the previous writer, and that the chances of two different
users modifying the same object less than a day apart is at
most 0.75%. We had expected to see the highest degree of
write-sharing on project files or directories, and were
surprised to see that it actually occurs on system files. We
conjecture that a significant fraction of this sharing arises
from modifications to system files by operators, who
change shift periodically. If system files are excluded, the
absence of write-sharing is even more striking: more than
99.5% of all mutations are by the previous writer, and the
chances of two different users modifying the same object
within a week are less than 0.4%! This data is highly
encouraging from the point of view of optimistic
replication. It suggests that conflicts would not be a
serious problem if AFS were replaced by Coda in our
environment.

6. Related Work

Coda is unique in that it exploits caching for both
performance and high availability while preserving a high
degree of transparency. We are aware of no other system,
published or unpublished, that duplicates this key aspect of
Coda.

223

By providing tools to link local and remote name spaces,
the Cedar file system [19] provided rudimentary support
for disconnected operation. But since this was not its
primary goal, Cedar did not provide support for hoarding,
transparent reintegration or conflict detection. Files were
versioned and immutable, and a Cedar cache manager
could substitute a cached version of a file on reference to
an unqualified remote file whose server was inaccessible.
However, the implementors of Cedar observe that this
capability was not often exploited since remote files were
normally referenced by specific version number.

Birrell and Schroeder pointed out the possibility of
"stashing” data for availability in an early discussion of the
Echo file system [13]. However, a more recent description
of Echo [8] indicates that it uses stashing only for the
highest levels of the naming hierarchy.

The FACE file system [3] uses stashing but does not
integrate it with caching, The lack of integration has at
least threc negative consequences. First, it reduces
transparency because users and applications deal with two
different name spaces, with different consistency
properties. Second, utilization of local disk space is likely
to be much worse. Third, recent usage information from
cache management is not available to manage the stash.
The available literature on FACE does not report on how
much the lack of integration detracted from the usability of
the system.

The use of optimistic replication in distributed file systems
was pioneered by Locus [22]. Since Locus used a peer-to-
peer model rather than a client-server model, availability
was achieved solely through server replication. There was
no notion of caching, and hence of disconnected operation.

Coda has benefited in a general sense from the large body

of work on transparency and performance in distributed file
systems. In particular, Coda owes much to AFS [18], from
which it inherits its model of trust and integrity, as well as
its mechanisms and design philosophy for scalability.

7. Future Work

Disconnected operation in Coda is a facility under active
development. In earlier sections of this paper we described
work in progress in the areas of log optimization,
granularity of reintegration, and evaluation of hoarding.
Much additional work is also being done at lower levels of
the system. In this section we consider two ways in which
the scope of our work may be broadened.

An excellent opportunity exists in Coda for adding
transactional support to Unix. Explicit transactions
become more desirable as systems scale to hundreds or
thousands of nodes, and the informal concurrency control
of Unix becomes less effective. Many of the mechanisms
supporting disconnected operation, such as operation
logging, precedence graph maintenance, and conflict
checking would transfer directly to a transactional system
using optimistic concurrency control. Although
transactional file systems are not a new idea, no such
system with the scalability, availability, and performance
properties of Coda has been proposed or built.

A different opportunity exists in extending Coda to support
weakly-connected operation, in environments where
connectivity is intermittent or of low bandwidth. Such
conditions are found in networks that rely on voice-grade
lines, or that use wireless technologies such as packet
radio. The ability to mask failures, as provided by
disconnected operation, is of value even with weak
connectivity. But techniques which exploit and adapt to
the communication opportunities at hand are also needed.
Such techniques may include more aggressive write-back
policies, compressed network transmission, partial file
transfer, and caching at intermediate levels.

8. Conclusion

Disconnected operation is a tantalizingly simple idea. All
one has to do is to pre-load one’s cache with critical data,
continue normal operation until disconnection, log all
changes made while disconnected, and replay them upon
reconnection,

Implementing disconnected operation is not so simple. It
involves major modifications and careful attention to detail
in many aspects of cache management. While hoarding, a
surprisingly large volume and variety of interrelated state
has to be maintained. When emulating, the persistence and
integrity of client data structures become critical. During
reintegration, there are dynamic choices to be made about
the granularity of reintegration.

224

Only in hindsight do we realize the extent to which
implementations of traditional caching schemes have been
simplified by the guaranteed presence of a lifeline to a
first-class replica. Purging and refetching on demand, a
strategy often used to handle pathological situations in
those implementations, is not viable when supporting
disconnected operation. However, the obstacles to
realizing disconnected operation are not insurmountable.
Rather, the central message of this paper is that
disconnected operation is indeed feasible, efficient and
usable.

One way to view our work is to regard it as an extension of
the idea of write-back caching. Whereas write-back
caching has hitherto been used for performance, we have
shown that it can be extended to mask temporary failures
too. A broader view is that disconnected operation allows
graceful transitions between states of autonomy and
interdependence in a distributed system. Under favorable
conditions, our approach provides all the benefits of remote
data access; under unfavorable conditions, it provides
continued access to critical data. We are certain that
disconnected operation will become increasingly important
as distributed systems grow in scale, diversity and
vulnerability.

Acknowledgments

We wish to thank Lily Mummert for her invaluable assistance in
collecting and postprocessing the file reference traces used in
Section 5.2, and Dimitris Varotsis, who helped instrument the
AFS servers which yielded the measurements of Section 5.3. We
also wish to express our appreciation to past and present
contributors to the Coda project, especially Puneet Kumar, Hank
Mashburn, Maria Okasaki, and David Steere.

References
[1] Burrows, M.
Efficient Data Sharing.

PhD thesis, University of Cambridge, Computer
Laboratory, December, 1988.

[2] Cate, V., Gross, T.
Combining the Concepts of Compression and Caching for
a Two-Level File System.
In Proceedings of the 4th ACM Symposium on
Architectural Support for Programming Languages
and Operating Systems. April, 1991.

[3] Cova, L.L.
Resource Management in Federated Computing
Environments.
PhD thesis, Department of Computer Science, Princeton
University, October, 1990.

[4] Davidson, S.B.
Optimism and Consistency in Partitioned Distributed
Database Systems.
ACM Transactions on Database Systems 9(3), September,
1984.

(51

[6]

(7

(8]

9]

{10]

[11]

(12]

[13]

{14]

[15]

[16]

[171

Davidson, S.B., Garcia-Molina, H., Skeen, D.
Consistency in Partitioned Networks.
ACM Computing Surveys 17(3), September, 1985.

Floyd, R.A.

Transparency in Distributed File Systems.

Technical Report TR 272, Department of Computer
Science, University of Rochester, 1989.

Gray, C.G., Cheriton, D.R.

Leases: An Efficient Fault-Tolerant Mechanism for
Distributed File Cache Consistency.

In Proceedings of the 12th ACM Symposium on Operating
System Principles. December, 1989.

Hisgen, A., Birrell, A., Mann, T., Schroeder, M., Swart, G.

Availability and Consistency Tradeoffs in the Echo
Distributed File System.

In Proceedings of the Second Workshop on Workstation
Operating Systems. September, 1989.

Howard, J.H., Kazar, M.L., Menees, S.G., Nichols, D.A.,

Satyanarayanan, M., Sidebotham, R.N., West, M.J.

Scale and Performance in a Distributed File System.

ACM Transactions on Computer Systems 6(1), February,
1988.

Kleiman, S.R.

Vnodes: An Architecture for Multiple File System Types
in Sun UNIX.

In Summer Usenix Conference Proceedings. 1986.

Kumar, P., Satyanarayanan, M.

Log-Based Directory Resolution in the Coda File System.

Technical Report CMU-CS-91-164, School of Computer
Science, Camegie Mellon University, 1991.

Mashburn, H., Satyanarayanan, M.
RVM: Recoverable Virtual Memory User Manual
School of Computer Science, Carnegie Mellon University,

1991.

Needham, R.M., Herbert, A.J.

Report on the Third European SIGOPS Workshop:
"Autonomy or Interdependence in Distributed
Systems".

SIGOPS Review 23(2), April, 1989.

Ousterhout, J., Da Costa, H., Harrison, D., Kunze, J.,

Kupfer, M., Thompson, J.

A Trace-Driven Analysis of the 4.2BSD File System.

In Proceedings of the 10th ACM Symposium on Operating
System Principles. December, 1985.

Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., Lyon,
B

Design and Implementation of the Sun Network
Filesystem.
In Summer Usenix Conference Proceedings. 1985.

Satyanarayanan, M.

On the Influence of Scale in a Distributed System.

In Proceedings of the 10th International Conference on
Sofitware Engineering. April, 1988.

Satyanarayanan, M., Kistler, I.J., Kumar, P_, Okasaki,

M.E,, Siegel, E.H., Steere, D.C.

Coda: A Highly Available File System for a Distributed
Workstation Environment.

IEEE Transactions on Computers 39(4), April, 1990.

225

(18]

(19]

(20}

[21]

[22]

Satyanarayanan, M.
Scalable, Secure, and Highly Available Distributed File
Access.

IEEE Computer 23(5), May, 1990.

Schroeder, M.D., Gifford, D.K., Needham, R.M.

A Caching File System for a Programmer’s Workstation.

In Proceedings of the 10th ACM Symposium on Operating
System Principles. December, 1985.

Steere, D.C., Kistler, J.J., Satyanarayanan, M.

Efficient User-Level Cache File Management on the Sun
Vnode Interface.

In Summer Usenix Conference Proceedings. June, 1990.

Decorum File System
Transarc Corporation, 1990.

Walker, B., Popek, G., English, R., Kline, C., Thiel, G.

The LOCUS Distributed Operating System.

In Proceedings of the 9th ACM Symposium on Operating
System Principles. October, 1983.

