
Libckpt� Transparent Checkpointing under Unix

James S� Plank

Micah Beck

Gerry Kingsley

Department of Computer Science
University of Tennessee
Knoxville� TN �����

�plank�beck�kingsley��cs�utk�edu

Kai Li

Department of Computer Science
Princeton University
Princeton� NJ ��	


li�cs�princeton�edu

Appearing in�

USENIX Winter ���	 Technical Conference
New Orleans� Louisiana
Jaunary ����� ���	

http���www�cs�utk�edu��plank�plank�papers�USENIX	
�W�html



Error Correction�

In the published Usenix paper� two columns of Table � were swapped� These were the columns marked
�Avg Ckpt Time� and �Avg Ckp Size�� This error has been corrected in this copy of the paper�



Libckpt� Transparent Checkpointing under Unix

James S� Plank� Micah Beck� Gerry Kingsley

University of Tennessee

Kai Li

Princeton University

Abstract

Checkpointing is a simple technique for rollback
recovery� the state of an executing program is pe�
riodically saved to a disk �le from which it can
be recovered after a failure� While recent research
has developed a collection of powerful techniques
for minimizing the overhead of writing checkpoint
�les� checkpointing remains unavailable to most
application developers� In this paper we describe
libckpt� a portable checkpointing tool for Unix
that implements all applicable performance op�
timizations which are reported in the literature�
While libckpt can be used in a mode which is
almost totally transparent to the programmer� it
also supports the incorporation of user directives
into the creation of checkpoints� This user�directed
checkpointing is an innovation which is unique to
our work�

� Introduction

Consider a programmer who has developed an
application which will take a long time to execute�
say �ve days� Two days into the computation� the
processor on which the application is running fails�
If the programmer has not planned for this event�
his only choice is to restart the program and lose
two days of work� Upon restarting the program�
he still needs �ve days of continuous failure�free
processor time to complete the job�
Libckpt is a checkpointing library designed for

such a programmer� To use libckpt� all he must
do is change one line of his source code and recom�
pile with the library libckpt�a� No other mod�
i�cations need to be made� Upon execution� the
program will periodically save its execution state
to disk �at the default interval� every �� minutes��
Upon a processor failure� the programmer need
only restart the program with the command line

�ag �recover� and the program will roll back to
the most recently checkpointed state� In the exam�
ple above� at most ten minutes of work will be lost�
and three more days of non�continuous failure�free
processor time will be needed to complete the job�

Libckpt is a tool for transparent checkpoint�
ing on uniprocessors running Unix� It imple�
ments incremental and copy�on�write checkpoint�
ing� two optimizations well�known in the litera�
ture ��� �� �� ���� Libckpt is a user�level li�
brary and uses only facilities which are com�
monly available under Unix� Libckpt has been
ported to and tested on a variety of architectures
and operating systems with no kernel modi�ca�
tions� Source code for libckpt can be obtained at
no cost by anonymous FTP from cs�utk�edu�	

pub�plank�libckpt�

In this paper� we show the performance gains
available in libckpt through transparent incre�
mental and copy�on�write checkpointing� In ad�
dition� we introduce a new optimization tech�
nique� implemented in libckpt� called user�

directed checkpointing� User�directed checkpoint�
ing works under the assumption that a little infor�
mation from the user can yield large improvements
in the performance of checkpointing� We demon�
strate that this assumption is often valid�

� Transparent Checkpointing

The goal of checkpointing is to establish a re�

covery point in the execution of a program� and to
save enough state to restore the program to this
recovery point in the event of a failure� The most
straightforward method for establishing a recovery
point under Unix is to suspend execution of the
application while the entire contents of a process�s
memory and registers are written to a �le� This is
called sequential checkpointing because disk trans�



fers are not interleaved with program execution�
Recovery is e�ected by reloading the executable
from its original �le� and then reconstructing the
memory and register state from the checkpoint �le�
This is akin to creating a core �le� from which
a user may recover using the undump utility and
execve��

We say that checkpointing is transparent when
no changes need to be made to the application
program� While transparency is easy to obtain
at the kernel level� it is harder to achieve in a
user level checkpointing library� All current im�
plementations of checkpointing share this limita�
tion� They operate transparently and correctly so
long as the application is well�behaved in a sense
we will de�ne in Section 
� Libckpt and all other

user�level checkpointers can cause a correct but ill�

behaved application to fail or to produce incorrect

output upon recovery�

Checkpointing with libckpt is not completely
transparent� The name of the initial proce�
dure in C must be changed from main� to
ckpt target�� This enables libckpt to gain con�
trol of the program as it starts� check the com�
mand line for the �recover �ag� read a �le called
�ckptrc to set checkpointing parameters� and be�
gin checkpointing� In fortran� libckpt is en�
abled by changing the main PROGRAM module to
SUBROUTINE ckpt target�� No other program
modi�cations are needed�

By default� once libckpt gets control of a pro�
gram� it generates a timer interrupt every ten min�
utes� and takes a sequential checkpoint at each in�
terrupt� This and other defaults can be changed
by placing appropriate lines in the �ckptrc �le�
In this section� we describe all options� where ap�
propriate� as they would appear in the �ckptrc

�le�

Placing the line �checkpointing�onjoff��
in the �ckptrc �le turns checkpointing on or
o�� If off� libckpt will take no checkpoints
and will not a�ect the execution of the ap�
plication� The default is on�

dir �directory� speci�es the directory in
which checkpoint �les are created and found�
The default is the current directory�

maxtime �seconds� de�nes the interval be�
tween checkpoints� At the beginning of the
program� and after each checkpoint� libckpt
calls alarm�seconds� and takes a checkpoint
upon catching each ALRM signal� Setting the
timer interval to zero turns o� all timer�
based checkpointing� The default value of
maxtime is 	

 ��
 minutes�

Many optimizations to simple sequential check�
pointing have been described in the literature�
Libckpt implements all published optimizations
that are applicable to general�purpose uniproces�
sor checkpointing� as well as the new user�directed
optimization� In the remainder of this section� we
consider each of them in turn�

��� Incremental Checkpointing

When a checkpoint is taken� only the portion of
the checkpoint that has changed since the previ�
ous checkpoint need to be saved� The unchanged
portion can be restored from previous check�
points� Incremental checkpointing ��� �� ���
uses page protection hardware to identify the un�
changed portion of the checkpoint� Saving only
the changed portion reduces the size of each check�
point� and thus the overhead of checkpointing�

incremental �onjoff� turns incremental
checkpointing on or o�� The default is off�

In general� the size of a non�incremental check�
point grows very slowly over time if at all� More�
over� only the most recent checkpoint �le needs
to be retained for recovery � older ones may be
deleted� In contrast� old checkpoint �les cannot
be deleted when incremental checkpointing is em�
ployed� because the program�s data state is spread
out over many checkpoint �les� The cumulative
size of incremental checkpoint �les will increase at
a steady rate over time� since many updated values
may be saved for the same page� In order to place
an upper bound on the cumulative size of incre�
mental checkpoint �les� it is necessary to coalesce
all old checkpoint �les into one new �le� and then
discard the old �les� For this purpose� libckpt in�
cludes a utility program ckpt coa� which coalesces
a collection of incremental checkpoint �les into a
single checkpoint �le�

maxfiles �n� sets the maximum number
of incremental checkpoint �les to n� After n
checkpoint �les have been created� libckpt
invokes ckpt coa to coalesce them into one
�le� If n � �� then no incremental check�
pointing can occur� Values of n greater than
one allow the user to strike a balance be�
tween the time and space overhead of incre�
mental checkpointing� The default is n � ��

Libckpt uses page protection to identify which
pages should be included in incremental check�
points� Speci�cally� after initialization and after
each checkpoint� the mprotect� system call is in�
voked to set the protection of all pages in the data



space to read�only� When a write occurs to a mem�
ory location in a protected page� the SEGV signal is
caught by a handler in libckpt� The faulting page
has its access protection set to read�write� and the
page is marked as dirty� When libckpt takes the
next checkpoint� only the dirty pages are included�

��� Forked Checkpointing

Incremental checkpointing as described in the
previous section is still sequential� Execution of
the application program is suspended while the
checkpoint �le is written out� An alternative is to
make a copy of the program�s data space and to
use an asynchronously executing thread of control
to write the checkpoint �le� This is called �main�
memory checkpointing� ����� and improves check�
point overhead if there is enough physical memory
to hold the checkpoint� as the saving of the check�
point to disk is overlapped with the execution of
the application�
The Unix fork� primitive provides exactly the

mechanism needed to implement main�memory
checkpointing ��� ���� When forked checkpointing
is speci�ed� libckpt forks a child process� which
creates and writes the checkpoint �le while the
parent process returns to executing the applica�
tion� The fork� system call provides the child
with a �xed snapshot of the parent�s data space
and a separate thread of control�

fork �onjoff� in the �ckptrc �le turns
main forked checkpointing on or o�� The
default is off�

An important improvement to main�memory
checkpointing is copy�on�write checkpointing ���
�� ���� Here the copy of main memory is taken
using copy�on�write �
� ���� Many implementa�
tions of fork� use a copy�on�write mechanism
to optimize the copying of the parent�s address
space ��	�� Thus� forked checkpointing corre�
sponds to either main�memory checkpointing or
copy�on�write checkpointing� depending on the op�
erating system�s implementation of fork��

��� Checkpoint Compression

With checkpoint compression� a standard com�
pression algorithm like LZW ���� is used to shrink
the size of the checkpoint ��� ���� While this
may be successful at reducing checkpoint size� it
only improves the overhead of checkpointing if the
speed of compression is faster than the speed of
disk writes� and if the checkpoint is signi�cantly
compressed� For uniprocessor checkpointing this

is not the case� Compression has only been shown
to be e�ective in parallel systems with disk con�
tention ����� For this reason� checkpoint compres�
sion is not implemented in libckpt�

� User�Directed Checkpointing

All the optimizations presented so far maintain
the transparency of checkpointing through tech�
niques that are not visible to the typical appli�
cation program� signal handlers� page protection�
and the creation of child processes� In this sec�
tion� we consider a di�erent approach that can
improve on the performance of these transparent
techniques and can also substitute for them when
automatic mechanisms are not available� We call
this approach �user�directed checkpointing�� We
consider two ways in which user�supplied direc�
tives can improve the performance of checkpoint�
ing� memory exclusion and synchronous check�
pointing�

��� Memory Exclusion

There are two situations where the values of
memory locations can be excluded from a check�
point �le� when the locations are dead and when
they are clean� In the case of dead locations� the
values in memory will never be read or written�
and thus do not need to be saved� In the case of
clean locations� the values in memory exist in a
previous checkpoint and have not been changed�
Thus they need not be saved in the current check�
point� While the identi�cation of excludable areas
of memory can sometimes be automated �as in in�
cremental checkpointing�� libckpt also allows the
programmer to declare them explicitly�
For example� suppose the user allocates a large

temporary array T to make a calculation� When
the lifetime of the data in array T is over� it will
never be referenced again � the next use of array
T will overwrite the old values� If a checkpoint
is taken outside of the lifetime of array T� then it
can be safely excluded from the checkpoint� Any
computation proceeding from this point will not
need to use the current values stored in array T�
The stack is a run�time mechanism that helps

the checkpointer to determine the lifetime of local
variables� This is one form of memory exclusion�
Only the live portion of the stack is saved� Un�
fortunately� this does not work for heap variables
or for variables which reside in the statically allo�
cated data segment�



The basis of incremental checkpointing is that
clean data need not be repeatedly written to
disk� In order to implement automatic incremen�
tal checkpointing� libckpt monitors page modi��
cations using the mprotect� system call and a
handler for the SEGV signal� This approach has a
few weaknesses� It can only operate at the page
granularity� system calls can fail rather than gen�
erating a SEGV signal when asked to write to a
protected page� and on some systems mprotect�
is not reliable�

In those cases where automatic mechanisms
cannot determine all possible memory exclusions�
the performance of checkpointing can su�er� For
this reason� libckpt allows the programmer to
manage memory exclusion explicitly through two
procedure calls�

exclude bytes�char �addr� int size� int usage�

include bytes�char �addr� int size�

Exclude bytes� tells libckpt to exclude the
region of memory speci�ed from subsequent check�
points� It may be called when the user knows
that these bytes are not necessary for the correct
recovery from the program� Usage is an argu�
ment which currently may have one of two val�
ues� CKPT READONLY or CKPT DEAD� If the former�
then exclude bytes� has been called because
the speci�ed memory will not be written to un�
til the user calls include bytes� on it� Con�
sequently� libckpt includes this memory in the
next checkpoint� but excludes it from subsequent
checkpoints until the memory is included with
include bytes�� If CKPT DEAD is speci�ed� then
the memory is dead � it will not be read before it
is next written� Thus� libckpt excludes this from
the next and subsequent checkpoints� until it is is
explicitly included with include bytes��

Include bytes tells libckpt to include the
speci�ed region of memory in the next and subse�
quent checkpoints� Thus� include bytes� can�
cels the e�ect of calls to exclude bytes�� al�
though calls to include bytes� do not have to
match calls to exclude bytes�� By default�
libckpt includes all bytes in a process�s active
stack and data segments that have not been ex�
plicitly excluded�

User�directed memory exclusion can dramati�
cally reduce the size of sequential and incremental
checkpoint �les� but it must be used very carefully�
If a live region of memory is mistakenly excluded
from a checkpoint� then a subsequent failure and

recovery can cause an otherwise correct applica�
tion to fail or to generate incorrect results�

��� Synchronous Checkpointing

In the previous section we discuss a mechanism
for optimizing asynchronous checkpointing by ex�
cluding certain areas of memory� This allows the
checkpointer to make use of data lifetime infor�
mation which would not otherwise be available to
it� However� the amount of data which can be ex�
cluded from the checkpoint is determined by the
program�s state when the checkpoint is taken� If
the stack is large� or the size of excluded memory
is small� then memory exclusion will have little
e�ect�
Synchronous checkpointing is a user directive

that allows the programmer to specify points in
the program where it is most advantageous for
checkpointing to occur� These are called �syn�
chronous� checkpoints because they are not ini�
tiated by timer interrupts� Synchronous check�
points should be inserted by the programmer
at points where memory exclusion can have the
greatest e�ect�

checkpoint here�� is a procedure call spec�
ifying where a synchronous checkpoint can
be taken�

Synchronous checkpoints may be placed in pro�
gram locations that are reached often� Check�
pointing too often� however� can lead to poor per�
formance� and in order to avoid this libckpt al�
lows a minimum interval between checkpoints to
be speci�ed�

mintime �seconds� speci�es the minimum
period of time that must pass between
checkpoints� The default is zero� If mintime
seconds have not passed since the previous
checkpoint� then checkpoint here�� calls
are ignored�

Synchronous and asynchronous checkpointing
techniques can complement one another� If
maxtime seconds have passed and no synchronous
checkpoint has been taken since the last check�
point� then an asynchronous checkpoint is still
taken� However� the e�ect of memory exclusion
is likely not to be as bene�cial as in a synchronous
checkpoint� If both the mintime and maxtime pa�
rameters are set� then the former speci�es the min�
imum interval between synchronous checkpoints�
and the latter speci�es an interval after which an
asynchronous checkpoint will be taken� Whenever



a checkpoint is taken� both the minimumand max�
imum interval timers are reset�
If maxtime is zero� then asynchronous check�

points are disabled� In this case the speci�cation
of memory exclusion can be optimized for syn�
chronous checkpoints� because there is no danger
of asynchronous checkpoints being taken�

��� An Example

There are many examples where user�directed�
synchronous checkpointing can yield large perfor�
mance gains� Consider the program in Figure ��
This is a typical driver program for many kinds of
programs that repeat calculations over numerous
points in a data set� Figure � shows how one can
checkpoint this program with synchronous� user�
directed checkpointing in libckpt�

main() 
{
  struct data *D;
  FILE *fi, *fo;

  D = allocate_data_set();
  fi = fopen("input", "r");
  fo = fopen("output", "w");
  while(read_data(fi, D) != -1) {
    perform_calculation(D);
    output_results(fo, D);
  }
}

Figure �� A typical scienti�c driver program� no
checkpointing

ckpt_target() 
{
  struct data *D;
  FILE *fi, *fo;

  D = allocate_data_set();
  fi = fopen("input", "r");
  fo = fopen("output", "w");
  while(read_data(fi, D) != -1) {
    perform_calculation(D);
    output_results(fo, D);
    exclude_bytes(D, sizeof(struct data), 
         CKPT_DEAD);
    checkpoint_here();
    include_bytes(D, sizeof(struct data));
  }
}

Figure �� A typical scienti�c driver program with
checkpointing

By specifying that the checkpoint must be taken
at the checkpoint here� call� we are able to

omit all of the variable D from the synchronous
checkpoint� This is because D is initialized anew
at each iteration of the program� If D is large�
then user�directed checkpointing will be respon�
sible for a signi�cant savings in checkpoint over�
head� Note that this will be a vast improvement
over incremental checkpointing because the mem�
ory locations in D will be dirty at the time of the
checkpoint�
Section � shows other successful examples of

user�directed checkpointing�

� The Mechanics of Checkpointing
and Recovery

The motivation for checkpointing is to recon�
struct the recovery point� We therefore begin with
an overview of the recovery process before describ�
ing the details of checkpointing� Recovery has
four parts� process creation� data state restora�
tion� system state restoration� and processor state
restoration�

�� Process creation is implemented by invoking
the checkpointed programwith a special com�
mand line argument for recovery� This auto�
matically restores the text portion of the pro�
cess�s state and begins execution� Libckpt
parses the command line� detects the argu�
ment for recovery� and calls the recovery rou�
tine�

�� The recovery routine performs the rest of the
recovery� Data state restoration means read�
ing the checkpoint �le to recreate the contents
of data memory� This consists of the process�s
stack and data segments�

�� System state restoration means restoring as
much of the operating system state as pos�
sible to its state at the time of the check�
point� Much of the operating system state�
such as the process ID and parent process
ID� is unrestorable� However� most applica�
tions that need checkpointing are what we call
�well�behaved�� and do not rely on such state�
Libckpt determines the state of the open �le
table at each checkpoint� and saves it as part
of each checkpoint� Upon recovery� libckpt
restores the system so that the state of open
�les is the same as it was at the time of the
checkpoint� No other system state is either
saved or restored by libckpt�



Application Abbreviation Language Running Maximum Checkpoint
Time Checkpoint Interval

�mm�ss Size �Mbytes �min
Matrix Multiplication MAT C ����
 ��	 �
Linear Equation Solver SOLVE fortran ����� ��	 �
Cellular Automata CELL C ����� ��� �
Shallow Water Model WATER fortran ����� ���� �
Multicommodity Flow MCNF fortran ����� ���� 	

Table �� Description of application instances


� Processor state restoration requires that
processor registers� including the program
counter and stack pointers be restored to their
values when the checkpoint was taken� In
libckpt� we use setjmp� to store the pro�
cessor state in memory� The processor state
is restored using longjmp�� Thus the recov�
ery routine never returns� and execution con�
tinues as an apparent �second return� from
the setjmp� of the checkpointing routine�

Thus the mechanics of checkpointing are
straightforward� When taking a checkpoint
libckpt saves the processor state using setjmp�
and records the state of the open �le table� Then
the data state� consisting of the program�s stack
and data segments� is written to disk�

� Experiments

In this section� we present the results of check�
pointing �ve application programs using libckpt�
The applications are long�running fortran and C
programs written by scientists to run under Unix�
All are typical of programs that can bene�t from
checkpointing for fault�tolerance�
The experiments were performed on a dedicated

Sparcstation � running SunOS 
����� and writing
to a Hewlett Packard HP���� disk via NFS� The
speci�c instances of the applications are described
in Table �� We describe the applications below�

� Matrix Multiplication �MAT�� This is a
straightforward matrix multiplication� Two
��	 � ��	 matrices are read from disk and
multiplied� and the product matrix is written
to an output �le�

� Linear Equation Solver �SOLVE�� This
is a testing program from LAPACK� a high�
performance package of linear�algebra sub�
routines ���� This program generates a system

of �	� equations with �	� unknowns� uses LU
decomposition to solve the system� and then
writes the solution to disk� It repeats this pro�
cess for seven separate systems of equations�

� Cellular Automata �CELL�� This pro�
gram executes a ��
�� ��
� grid of cellular
automata for �fteen generations�

� ShallowWater Model �WATER�� This is
the program STSWM from the National Center
for Atmospheric Research� The program is
a shallow water model based on the spectral
transform method �	�� The instance used here
is �Zonal Flow over a Mountain� from their
test suite� modeled at �	�minute intervals for
six hours�

� Multicommodity Flow �MCNF�� This
program solves the multicommodity network
�ow problem using the simplex method ����
The instance used here runs on a network of
��� vertices and 	� commodities�

Note that for the purposes of these experiments�
input values have been chosen to give running
times between thirteen and thirty minutes� Typ�
ically� the programs would be set up to run for
much longer� thus making them ideal candidates
for libckpt�
We present results pertaining to the three im�

portant metrics of checkpointing performance�

� Checkpoint time� This is the average du�
ration of a checkpoint� from start to �nish�

� Checkpoint overhead� This is amount of
time added to the running time of the ap�
plication as a result of checkpointing� Note
that in sequential checkpointing� overhead is
equal to the total checkpoint time� In main�
memory and copy�on�write checkpointing� the
overhead is smaller than the total checkpoint



0 5 10 15 20 25

Checkpoint Size (Mbytes)

0

50

100

150
C

he
ck

po
in

t 
T

im
e

an
d 

O
ve

rh
ea

d 
(s

ec
)

Figure �� Checkpoint Time vs� Size for Sequential
Checkpointing

time because the disk writes are performed in
parallel with the execution of the application�

� Checkpoint size� This is the average size of
the checkpoint �le�

The prime goal of checkpoint optimization is to
minimize all three of these metrics� while still
providing adequate fault�tolerance� Minimizing
checkpoint overhead is the most important� be�
cause users would rather take the risk of fail�
ure than use a checkpointer that increases their
applications� running time signi�cantly� Keep�
ing the overhead of checkpointing under ��� of
the program�s total running time is a reasonable
goal ��� ���� Minimizing checkpoint size is also
important� as disk space rarely comes for free�
Checkpoint time is the least important of the three
metrics� When checkpointing for fault�tolerance�
the only concern is that the current checkpoint
complete before the user desires the next check�
point to begin�

� Results

All of the experimental results are contained in
Table � in the appendix� All of the graphs and
data in this section are drawn directly from Ta�
ble ��

��� Sequential Checkpointing

With no optimizations� checkpoint time and
overhead should be the same� and should be di�
rectly proportional to the checkpoint size� Fig�
ure � con�rms this prediction� showing checkpoint
overhead and time vs� size for the sequential
checkpointing runs described in Table ��

0 5 10 15 20 25

Checkpoint Size (Mbytes)

0

20

40

60

80

100

%
 R

ed
uc

ti
on

In
 C

he
ck

po
in

t 
O

ve
rh

ea
d

Figure 
� Percentage Reduction in Checkpointing
Overhead by Using fork�

��� Checkpointing with fork��

When checkpointing with fork�� the applica�
tion writes its checkpoints to disk asynchronously�
This enables it to run concurrently with the sav�
ing of the checkpoint� thereby reducing the over�
head of checkpointing dramatically� as shown in
Figure 
� This �gure displays the percentage re�
duction in the overhead of checkpointing by using
fork���

Because SunOS 
���� implements fork� with
copy�on�write� Figure 
 shows that copy�on�write
improves the overhead of checkpointing by over ��
percent in almost all cases�

��� Incremental Checkpointing

Figure 	 is a graph showing the percentage re�
duction of checkpoint size and checkpoint over�
head when using incremental checkpointing in�
stead of simple sequential checkpointing� In three
of the applications �MAT� WATER� and MCNF��
only a fraction of the applications� address spaces
are modi�ed between checkpoints� resulting in a
signi�cant reduction in the average checkpoint
size� Correspondingly� the overhead of checkpoint�
ing is signi�cantly reduced� In the other two pro�
grams� the entire address spaces of the programs
are modi�ed between checkpoints� yielding little to
no reduction in the size of checkpoints� Therefore�
in SOLVE and CELL� the overhead of checkpoint�
ing is increased due to the fact that the cost of
handling page faults is not o�set by a savings in
the time to write the checkpoint to disk�

�Ninety percent reduction in checkpointoverheadmeans

that the overhead of checkpointing using fork�� is ten per�

cent of the overhead of sequential checkpointing



M
A

T

SO
L

V
E

C
E

L
L

W
A

T
E

R

M
C

N
F

-20

0

20

40

60

80

100

P
er

ce
nt

ag
e 

re
du

ct
io

n
in

 c
he

ck
po

in
t

si
ze

-20

0

20

40

60

80

100

P
er

ce
nt

ag
e 

re
du

ct
io

n
in

 c
he

ck
po

in
t

si
ze

M
A

T

SO
L

V
E

C
E

L
L

W
A

T
E

R

M
C

N
F

-20

0

20

40

60

80

100

P
er

ce
nt

ag
e 

re
du

ct
io

n
in

 c
he

ck
po

in
t

ov
er

he
ad

-20

0

20

40

60

80

100

P
er

ce
nt

ag
e 

re
du

ct
io

n
in

 c
he

ck
po

in
t

ov
er

he
ad

Figure 	� Percentage Reduction in Checkpoint Size and Overhead Through Incremental Checkpointing

User
Directives

No User
Directives

0

1

2

3

4

5

C
he

ck
po

in
t 

Si
ze

(M
by

te
s)

User
Directives

No User
Directives

0

50

100

150
C

he
ck

po
in

t
O

ve
rh

ea
d 

(s
ec

)
Sequential
Incremental
Sequential with fork()
Incremental with fork()

Figure �� Results of User�Directed Checkpointing on the SOLVE Application

��� User�Directed Checkpointing

In the previous three sections� the results cor�
roborate published research concerning check�
pointing optimizations ��� �� �� ���� In this section�
we evaluate the the new technique� user�directed
checkpointing� In three of the applications� we an�
alyzed the application programs and inserted di�
rectives in the code� In each case� we were able to
add under ten lines of code� making checkpoints
synchronous� and excluding memory from these
checkpoints� We describe the details of each ap�
plication below�
SOLVE� Adding directives to the Linear Equa�
tion Solver was straightforward� At the end of
each iteration� all of the program�s arrays are
dead� The matrix of equations will be initial�
ized anew for the next iteration� and the solu�
tion vector will be recalculated� Therefore at the
end of each iteration� we insert exclude bytes�

calls for the equation matrix and solution vec�
tor� then a checkpoint here� call� and �nally
include bytes� calls to re�include the matrix
and vector in case of an asynchronous checkpoint�
The results can be seen in Figure �� The calls

to exclude bytes� and checkpoint here� pro�
duce checkpoint �les that are almost� reducing the
checkpoint size and overhead by over �� percent�

This is signi�cant� because it is an application
where incremental checkpointing fails to improve
the performance of checkpointing�
CELL� At the end of each generation of the cel�
lular automaton application� the previous value of
the automaton grid becomes dead � its values are
not used for the calculation of the subsequent gen�
erations of the computation� Therefore we added
user directives to checkpoint at the end of each
generation� excluding the dead half of the grid
from each checkpoint� In order to checkpoint at
roughly the same interval as before� we also set
mintime to ���� so that every second generation
is checkpointed�
The results are in Figure �� With our user di�

rectives� the checkpoint size is halved� Accord�
ingly� the overhead of checkpointing is also halved�
Thus� as in SOLVE� the calls to exclude bytes�

and checkpoint here� succeed in improving the
overhead of checkpointing in an application where
incremental checkpointing fails�

MAT� In the matrix multiplication the two
input matrices are read�only data� More�
over� once a product element is calculated it
too is read�only� This is why incremental
checkpointing works so well� In this applica�
tion� we inserted exclude bytes� calls �with
�ag�CKPT READONLY� after reading the input ma�



User
Directives

No User
Directives

0

2

4

6

8
C

he
ck

po
in

t 
Si

ze
(M

by
te

s)

User
Directives

No User
Directives

0

100

200

300

400

C
he

ck
po

in
t

O
ve

rh
ea

d 
(s

ec
)

Sequential
Incremental
Sequential with fork()
Incremental with fork()

Figure �� Results of User�Directed Checkpointing on the CELL Application

User
Directives

No User
Directives

0

1

2

3

4

5

C
he

ck
po

in
t 

Si
ze

(M
by

te
s)

User
Directives

No User
Directives

0

50

100

150

200

250

C
he

ck
po

in
t

O
ve

rh
ea

d 
(s

ec
)

Sequential
Incremental
Sequential with fork()
Incremental with fork()

Figure �� Results of User�Directed Checkpointing on the MAT Application

trices and also after calculating a product row
to mark the memory as read�only� Thus� once
a checkpoint contains these values� subsequent
checkpoints omit them� The behavior of the appli�
cation with these calls should approximate stan�
dard incremental checkpointing � after data be�
comes read�only� it is omitted from subsequent
checkpoints�
The results of this experiment are shown in Fig�

ure �� The important bars are the solid ones�
showing that the checkpoints obtained with the
user directives are approximately the same size
as those obtained with incremental checkpoint�
ing� Moreover� they show slightly lower overhead�
because they spend no extra time catching page
faults�

	 Related Work

There has been much computer science research
devoted to checkpointing� Checkpointing has been
implemented on uniprocessors ��� ���� multiproces�
sors ��� ���� transputers ��
�� multicomputers �����
and and distributed systems ��� ��� Of these imple�
mentations� only two �Condor ���� and Fail�Safe
PVM ���� are publicly available code for Unix envi�
ronments� Both implement sequential checkpoint�
ing with forking� and neither is designed for sim�
ple uniprocessor checkpointing� Condor is a sys�
tem for batch programming using process migra�

tion� and Fail�Safe PVM requires the programmer
to have access to the PVM infrastructure� Nei�
ther package implements any optimizations be�
yond calling fork��

User�directed checkpointing bears some sim�
ilarity to checkpointers by Li and Fuchs ����
and Silva et al ��
�� The former describes
static checkpointing� which is similar to our
synchronous checkpointing� The user places
potential checkpoint here� calls into his pro�
gram� and the compiler and�or runtime system de�
cides which of those calls would be best for check�
pointing� They call for no user assistance in de�
termining the memory to exclude �they only ex�
clude the stack and unallocated heap memory��
and do not show the dramatic performance im�
provements gained by user�directed checkpointing
in the SOLVE� CELL� and MAT applications�

Silva et al implement a checkpointing package
for transputers in which the user speci�es exactly
what and where to checkpoint� but the process
state is not included in checkpoints� Thus the
user is responsible for rebuilding the call stack�
although not the data� on recovery� Our approach
di�ers because the checkpointer is responsible for
the entire process state� and not just for the in�
tegrity of the data�




 Conclusion

We have written a general�purpose checkpoint�
ing library� libckpt� that provides fault�tolerance
for long�running programs under Unix� The
strengths of this library are its ease of use and
low overhead� Libckpt is currently available via
anonymous FTP to cs�utk�edu in the directory
pub�plank�libckpt�

Our experiments with libckpt show �rst and
foremost that it is general�purpose and easy to
use� We were able to checkpoint all �ve appli�
cations by changing one line of the applications�
source code� and relinking with libckpt� Once
enabled� these programs could save their state
to disk periodically for fault�tolerance� using the
fork� and incremental checkpointing optimiza�
tions if so desired� For all �ve applications� we
were able to dramatically lower the overhead of
checkpointing with copy�on�write� as implemented
by libckpt�s fork� optimization� Moreover� in
three of the �ve applications� checkpoint size and
overhead were reduced by over �� percent using
incremental checkpointing� Thus� libckpt is able
to take e cient checkpoints using standard tech�
niques from the checkpointing literature�
Libckpt also implements user�directed check�

pointing� a new technique for improving the per�
formance of checkpointing based on the assump�
tion that a little user input to the checkpointer
can result in a large performance payo�� Mem�
ory exclusion and synchronous checkpointing are
the two ways in which a user can direct the check�
pointer to checkpoint more e ciently� In our ex�
periments� directives added to three of the appli�
cations yielded performance improvements in all
three cases�

One avenue of future research is to employ com�
piler analysis to assist user�directed checkpoint�
ing� If the user places the checkpoint here�

calls� the compiler can use data dependence
analysis to make calls to exclude bytes� and
include bytes�� The bene�ts may be twofold�
First� the compiler may discover dead variables to
exclude that the user may omit� Second� the com�
piler can guarantee that its memory exclusion will
yield correct checkpoints� In other words� whereas
the user might err in excluding too much memory
from a checkpoint� resulting in a faulty recovery
state� the compiler can guarantee correctness�
It is the authors� opinion that checkpointing

primitives such as those provided by libckpt
should be implemented in the operating system�
This will improve both the performance and the

generality of checkpointing� Until such a time�
users can make use of a tool such as libckpt to
render their programs resilient to failure�

Acknowledgements

The authors thank Jian Xu� Jack Dongarra�
Christian Halloy� and the National Center for At�
mospheric Research for help in obtaining test pro�
grams� We also thank Nitin Vaidya� Mootaz El�
nozahy� Heather Booth� and the referees for their
valuable comments� James Plank is supported by
NSF grant CCR��
��
��� Kai Li is supported
by ARPA and ONR under contracts N����
����J�

���� and Intel Supercomputer Systems Division�

References

��� E� Anderson� Z� Bai� C� Bischof� J� Dem�
mel� J� Dongarra� J� Du Croz� A� Green�
baum� S� Hammarling� A� McKenney� S� Os�
trouchov� and D� Sorensen� LAPACK User�s

Guide� SIAM� Philadelphia� PA� �����

��� E� N� Elnozahy� D� B� Johnson� and
W� Zwaenepoel� The performance of con�
sistent checkpointing� In ��th Symposium

on Reliable Distributed Systems� pages ��
��
October �����

��� S� I� Feldman and C� B� Brown� Igor� A
system for program debugging via reversible
execution� ACM SIGPLAN Notices� Work�

shop on Parallel and Distributed Debugging�
�
����������� Jan �����

�
� R� Fitzgerald and R�F� Rashid� The in�
tegration of virtual memory management
and interprocess communication in accent�
ACM Transactions on Computer Systems�

�����
����� May �����

�	� J� J� Hack� R� Jakob� and D� L� Williamson�
Solutions to the shallow water test set using
the spectral transform method� Technical Re�
port TN�����STR� National Center for Atmo�
spheric Research� Boulder� CO� �����

��� J� Kennington� A primal partitioning code
for solving multicommodity �ow problems
�version ��� Technical Report IEOR�������
Southern Methodist University� �����



��� J� Le!on� A� L� Fisher� and P� Steenkiste�
Fail�safe PVM� A portable package for dis�
tributed programming with transparent re�
covery� Technical Report CMU�CS������
�
Carnegie Mellon University� February �����

��� C�C� J� Li and W� K� Fuchs� CATCH 
Compiler�assisted techniques for checkpoint�
ing� In �	th International Symposium on

Fault Tolerant Computing� pages �
��� �����

��� K� Li� J� F� Naughton� and J� S� Plank� Real�
time� concurrent checkpoint for parallel pro�
grams� In Second ACM SIGPLAN Sympo�

sium on Principles and Practice of Parallel

Programming� pages ����� March �����

���� K� Li� J� F� Naughton� and J� S� Plank� Low�
latency� concurrent checkpointing for paral�
lel programs� IEEE Transactions on Parallel

and Distributed Systems� 	������
���� Au�
gust ���
�

���� M� Litzkow and M� Solomon� Supporting
checkpointing and process migration outside
the Unix kernel� In Conference Proceedings�

Usenix Winter �

� Technical Conference�
pages ������� San Francisco� CA� January
�����

���� D� Z� Pan and M� A� Linton� Support�
ing reverse execution of parallel programs�
ACM SIGPLAN Notices� Workshop on Par�

allel and Distributed Debugging� �
������

���� January �����

���� J� S� Plank and K� Li� Ickp � a consis�
tent checkpointer for multicomputers� IEEE
Parallel � Distributed Technology� �������
��� Summer ���
�

��
� L� M� Silva� B� Veer� and J� G� Silva�
Checkpointing SPMD applications on trans�
puter networks� In Scalable High Perfor�

mance Computing Conference� pages ��

���� Knoxville� TN� May ���
�

��	� W� Richard Stevens� Advanced Programming

in the UNIX Environment� Addison�Wesley�
Reading� Mass�� �����

���� M� M� Theimer� K� A� Lantz� and D� R� Cheri�
ton� Preemptable remote execution facilities
for the V�system� In Tenth ACM Symposium

on Operating System Principles� pages ����
Orchas Island Washington� December ���	�

���� T� A� Welch� A technique for high�
performance data compression� IEEE Com�

puter� ������� June ���
�

���� P� R� Wilson and T� G Moher� Demonic
memory for process histories� In SIGPLAN

��
 Conference on Programming Language

Design and Implementation� pages ����
��
June �����

Author Information

Jim Plank is an assistant professor in the De�
partment of Computer Science at the University
of Tennessee� He received his Ph�D� degree from
Princeton University in ����� His areas of interest
are checkpointing� fault�tolerance� operating sys�
tems� and architecture�
Micah Beck is an assistant professor in the De�

partment of Computer Science at the University of
Tennessee� He received his Ph�D� degree fromCor�
nell University in ����� His areas of interest are
program analysis and compilation for parallelism�
Gerry Kingsley is a Ph�D� student in the De�

partment of Computer Science at the University
of Tennessee� His research interests include com�
piler analysis techniques� user level checkpointing�
and general fault tolerance�
Kai Li received his Ph�D� degree from Yale Uni�

versity in ���� and is currently an associate pro�
fessor of the Department of Computer Science�
Princeton University� His research interests are
in operating systems� computer architecture� fault
tolerance� and parallel computing� He is an edi�
tor of the IEEE Transactions on Parallel and Dis�
tributed Systems� and a member of the editorial
board of International Journal of Parallel Pro�
gramming�
The �rst three authors� address is � Depart�

ment of Computer Science� University of Ten�
nessee� ��� Ayres Hall� Knoxville� TN ������
Their email addresses are �plank� beck� kings	

ley��cs�utk�edu� Kai Li�s address is� Prince�
ton University� �	 Olden Street� Princeton� NJ
��	

������ He may be reached electronically at
li�cs�princeton�edu�



Appendix

Appli� User Incre� Fork Running Over� � Avg Ckpt Avg Total Num
cation Direc� mental Time head Over� Time Ckpt Size of

tives �sec �sec head �sec �Mbytes Ckpts
MAT No checkpointing ��
�� � � � � �

no no no ��	
�
 ����� �	�
 ���� ���� ��
no yes no �	��� �
�� ��� ��	 
��� ��
no no yes �	��� ���� ��� ���� ���� ��
no yes yes ����
 �
�� ��� ��� 
��� ��
yes no no �	��� ���� ��� ��	 
��� ��
yes yes no ��
�� ���� ��� ��� 
��	 ��
yes no yes ��
�� ��� ��� ��
 
��� ��
yes yes yes ����
 �
�� ��� ��� 
��	 ��

SOLVE No checkpointing ����� � � � � �
no no no �		�� ����� ���� ���	 ��	� �
no yes no �


�� ����
 ���	 ���� ���� �
no no yes ����	 ���� ��� ���	 ��	� �
no yes yes �	��� ���� ��� ���� ���� �
yes no no ��	�� ���	 ��� ��� 
��� �
yes yes no ����� �
�	 ��� ��
 
�
� �
yes no yes ��
�
 ��� 
�� ��� 
��� �
yes yes yes ����� 	�	 
�� ��� 
�
� �

CELL No checkpointing �
���� � � � � �
no no no ������ ����� ���� ���� ���	 �
no yes no ������ ����� ���� ���
 ���� �
no no yes ���
�� �
�� 	�	 ���� ���	 �
no yes yes ������ ���
 ��� �
�
 ���� �
yes no no ��
��� ����� ���� ���� ���	 �
yes yes no ���
�� ��
�� ���� �
�� ��	� �
yes no yes ��
��� ���� ��� ���� ���	 �
yes yes yes ������ ���� ��� �
�� ��	� �

WATER No checkpointing ������ � � � � �
no no no ���
�� 	�	�� ���� ���	 ����� �
no yes no ��

�� ��	�� ���� ���� ���� �
no no yes �	�	�� ����� ��� ���	 ����� �
no yes yes �	���� ���� ��� ���� ���� �

MCNF No checkpointing ������ � � � � �
no no no �	���� �	��	 �
�� ����� ����� �
no yes no ���	�� ���� ��� �
�� ���� �
no no yes ������ ���
 ��� ����� ����� �
no yes yes �����	 ��� 
�� �
�� ���� �

Table �� Results of all checkpointing experiments


