

Background: Synchronization Approaches

- Physical Clock Adjustment
- All clocks show the same actual time
- Problems:
- Most important: backward time flow possible
- Sophisticated time services (i.e. WWV); or
- Reliance on a human operator
- Logical Clock Adjustment
- Consistency is important, not actual time

Background: Distributed System Features

- Spatially separated processes
- Processes communicate through messages
- Message delays are considerable
- Absence of the single timer leads to synchronization problems
- Example: totally ordered multicast
- Key Points
- Background
- Partial Ordering
- Extension for Total Ordering
- Further Work
- Key Points Reiteration
- Evaluation
- Discussion

Partial Ordering: Implementation Rules

- IR1. Each P_{i} increments C_{i} between any two successive events.
- IR2.
a) If a is the sending of a message m by P_{i}, then m contains a timestamp $T_{m}=C_{j}\langle a\rangle ;$ and
b) Upon receiving m, P_{i} sets C_{j} greater than or equal to its present value and greater than T_{m}

Partial Ordering: Corrected Clocks

Total Ordering: Synchronization

:B:
P_{i} broadcasts the message $T_{m}: P_{i}$ (request resource) and puts it on its request queue.
2. When P_{i} receives $T_{m}: P_{i}$, it puts the message on its request queue and sends the acknowledgment to P_{i}.
3. To release the resource, P_{i} removes $\mathrm{T}_{\mathrm{m}}: \mathrm{P}_{\mathrm{i}}$ from its queue, broadcasts a timestamped release message.
4. When P_{j} receives the release message, it removes $T_{m}: P_{i}$ from its queue.
P_{i} is granted the resource when

1) It has $T_{m}: P_{i}$ in its queue ordered before any other request in the queue by the relation \longrightarrow; and
P_{i} has received a message from every other process timestamped later than T_{m}

Further Work: Vector Timestamps

- Lamport clock is:
- Consistent: $\mathrm{a} \rightarrow \mathrm{b} \Rightarrow \mathrm{C}\langle\mathrm{a}\rangle<\mathrm{C}\langle\mathrm{b}\rangle$
- Not: $\mathrm{C}\langle\mathrm{a}\rangle<\mathrm{C}\langle\mathrm{b}\rangle \Leftrightarrow \mathrm{a} \rightarrow \mathrm{b}$ (not strongly consistent)
- Vector timestamps (VT) are strongly consistent
- VT address potential causality
- Allow to say if a happened before b, but not if a caused b
- VT say how many events have occurred so far at all processes
- VT solve the totally-ordered multicasting problem

Key Points Reiteration

:\%:。

1. The "happens before" relation on the system event set
2. The events partial ordering on the base of the relation
3. The distributed algorithm for logical clock synchronization
4. The algorithm extension to a case of total events ordering
5. The algorithm application for physical clock synchronization

