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i Key Points

= Meta-data integrity

= Journaling systems record metadata
operations on an auxiliary log

= Soft updates uses ordered writes

i FFS Organization
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i Meta-data Integrity """

= Meta-data operations modify the
structure of the file system
= Creating, deleting or renaming files
= Why is it important?
= Suppose you delete a file and subsequently
crash
= Privacy compromise ?

= File system recovery must be possible

i Update Dependency Rules

1 Never point to a structure before it
has been initialized. (inode < direntry)

2y Never reuse a resource before
nullifying all previous pointers to
it.(inode ptr to data blk < blk realloc)

3 Never reset the last pointer to a live
resource before a new pointer has
been set. (File rename)




* Deleting a File

Directory block

Assume we want to delete file “def”

i Deleting a File

= Correct sequence is
Write to disk directory block containing deleted

directory entry “def”
Write to disk i-node block containing deleted i-

node
Leaves the file system in a consistent

state

i Deleting a File

Directory block

Cannot delete i-node before directory entry “def’

i Creating a File

Directory block

Assume we want to create new file “tuv”

& Creating a File

Directory block

Cannot write directory entry “tuv” before i-node
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* Creating a File

= Correct sequence is
Write to disk i-node block containing new i-node

Write to disk directory block containing new
directory entry
Leaves the file system in a consistent

state




i Synchronous Updates

= FFS
= Guarantees durability

= Meta-data operations done through
blocking writes

= Problems
= Increases cost of updates
= Impacts file system performance
= Recovery requires full file system scan

i Soft Updates

= Delayed writes (write-back cache)

= Dependency information
= Block level vs. Pointer level

= Advantage — faster file system recovery
after crash

= Overhead - extra write
= When to write to disk?

Cyclic Dependency
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Undo/redo Operations
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() After Metadata Updates
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Undo/redo Operation Cont.
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i Journaling File Systems

= LFFS-file
= Write-ahead logging (WAL)
= Flush meta data to persistent storage before data
= Circular buffer

= Size of log proportional to amount of changing meta-
data (usually KB)

= Log space reclamation
= Periodic syncer daemon
= Forced checkpoints




Journaling File Systems

» LFFS-wafs
= Auxiliary file system
= Flexibility

= Log on a separate high speed disk to reduce
contention

= Asynchronous logs for performance

Structure of Journal

= Contains three types of data blocks

= Metadata: entire contents of a single block of
filesystem metadata as updated by the transaction

= Descriptor: describe other journal metadata blocks
(where they really live on disk)

= Header: contain head and tail of the journal,
sequence number, the journal is a circular
structure
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LFFS Recovery

= Superblock has address of last checkpoint
= LFFS-file has frequent checkpoints
= LFFS-wafs much less frequent checkpoints

» First recover the log

= Read the log from logical end (backward
pass) and undo all aborted operations

= Do forward pass and reapply all updates that
have not yet been written to disk

File System Configurations

File System Configurations

[FFe Trndar] FFS
FFS-asyne FFS moumted witls the asyne option
Soft-Updates FFS mounted with Soft Updates
LFFs-file FFS augmented with a file log
mchronous
TFFS-wals-lsyne FFS augmented wilh a WAFS log
log writes are synchronous
TFFS-wals-lasyne FFS angmented with a WAFS log
log writes are asynchronous

LFFS-wafs-Jsyne FFS augmented with a W

LFFS-wafs-2asyne

log is on a separate disk
log writes are asynelronous

Table 1. File System Configurations. 22

System Comparison

= Semantics
= Durability
= Status of file system after a reboot
= Guarantees about the data in files
= Ability to provide atomicity
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Feature Comparison

Feature File Systems

Metasdatn updates are synchromous [FFS,
LEFS-wafs-{12}sync
Meta-data npdates are asynchronous  |Soft Updates
LFFS-file
LFFSawafi]12Jasyne
Meta-data updates arc atomic. LFFS-fle
LFFS-wafs-{12]*

File data blocks are freed m back- Seft Updates

ground
Weve data blocks are written before | 5ot Updates
imodes

Recovery requires full file system |FES
sean
Flecovery requires log replay LFFS.*

Recovery is non-deterministic and  [FFS-asyne
may be impossible

Table 2. Feature Comparison. 24




Microbenchmark _
Results - :
LF + clustering
+
i indirect bjock
Create Performance ,‘/
) -3 i i '-.""\-\_
« Drops in all curves. i I's
' ;y s

I Pl S
¥
/4 i 4

¥
S e r
¥
V. &
4 16 L2 2% 14 AR

Fik Size in KB ilog 2)

Figure 1. Create Performance as a Function of
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i Macrobenchmark Results
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i Results Summary

= Soft updates excels in meta-data
intensive microbenchmarks
= Background deletes
= No disk 1/0 for 0-length file create/delete

= Macrobenchmark results are ambiguous

i Evaluation

= Soft-updates — just another way of doing
meta-data updates.

= Difficult to implement on FS which
implements directories as b-tree / hashes.

= Updates may proceed out of order.
= Eg. Create /dirl/a and then /dir2/b.

= Better parallelism due to fine-grained meta-
data updates.
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i Evaluation

= Journaling widely adopted in industry (ext3,
VXFS, JFS)

= Journaling alone is not sufficient to “solve”
the meta-data update problem

= Cannot realize its full potential when synchronous
semantics are required

= Which method to choose -
= Depends heavily on your file system design goals
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i Questions

30




i Delete Performance
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i Approaches

= Soft Updates
= Journaling

= Hardware techniques
= NVRAM
= MRAM

= Log-structured file systems (LFS)
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