Journaling Vs. Soft Updates:
Asynchronous Meta-data

!’- Protection in File Systems

Margo 1. Seltzer, Gregory R. Ganger, M. Kirk McKusick,
Keith A. Smith, Craig A. N. Soules, Christopher A. Stein

Presented By:
Abhijit Deodhar

i Overview

= Key Points

= Approaches
= Soft updates
= Journaling

= Comparison

= Evaluation

i Key Points

= Meta-data integrity

= Journaling systems record metadata
operations on an auxiliary log

= Soft updates uses ordered writes

i FFS Organization

Source: http.//owen.sj.ca.us/rkowen/howto/robj/images/inode.png 4

Old directory
will contain link

i Meta-data Integrity """

= Meta-data operations modify the
structure of the file system
= Creating, deleting or renaming files
= Why is it important?
= Suppose you delete a file and subsequently
crash
= Privacy compromise ?

= File system recovery must be possible

i Update Dependency Rules

1 Never point to a structure before it
has been initialized. (inode < direntry)

2y Never reuse a resource before
nullifying all previous pointers to
it.(inode ptr to data blk < blk realloc)

3 Never reset the last pointer to a live
resource before a new pointer has
been set. (File rename)

* Deleting a File

Directory block

Assume we want to delete file “def”

i Deleting a File

= Correct sequence is
Write to disk directory block containing deleted

directory entry “def”
Write to disk i-node block containing deleted i-

node
Leaves the file system in a consistent

state

i Deleting a File

Directory block

Cannot delete i-node before directory entry “def’

i Creating a File

Directory block

Assume we want to create new file “tuv”

& Creating a File

Directory block

Cannot write directory entry “tuv” before i-node

1

* Creating a File

= Correct sequence is
Write to disk i-node block containing new i-node

Write to disk directory block containing new
directory entry
Leaves the file system in a consistent

state

i Synchronous Updates

= FFS
= Guarantees durability

= Meta-data operations done through
blocking writes

= Problems
= Increases cost of updates
= Impacts file system performance
= Recovery requires full file system scan

i Soft Updates

= Delayed writes (write-back cache)

= Dependency information
= Block level vs. Pointer level

= Advantage — faster file system recovery
after crash

= Overhead - extra write
= When to write to disk?

Cyclic Dependency

Inode Block Directory Block Inpde Block Directory Block
Inixdes ##4 <0 > Inode il 1 e—— _ 4 44
Inode 25 Inode #5

<B#5> <BAS >
Inoda #5 Inode #6
Inode 57 < GAT= Inode #7 <CAT >
(&) Original Organization (k) Create File A

Inode Block Directory Block
Inode £ (——y_ 4 o
(00 L —
Inode #G
Incde %7

< i >

= CHT =

{c) Remove File B
Source: Soft Updates: A solution to the metadata update problem in File Systems - Ganger 15

Undo/redo Operations

Main Memory Disk
Inode Block Dweclary Block Inode Block Direclory Block
IN0Cle: 4] _ s g Inode #4 < o i) >
Inode 5] s Inode #5 e
Incide #G Inode #6
Inode #7 <CHI > Inade #7 < CAT >

() After Metadata Updates

Inode Block Directory Block Inode Block Directory Block
Inodde #4 [4——] . 0w Inode #4 « 0>
Inode ¥ Inode #5
Undo S - i~ noce & T p—
Incde #6 Inode #6
Inode &7 <C#T> Inode &7 <c#l= Free(B)
(b) Safe Version of Directory Block Written 16

Undo/redo Operation Cont.

Inode Block Directory Block Inode Block Directory Block

Inode #4 4 Inode £4 ’

< Ag = <o 0 >
Inode &5 = Inode =5 .

<o i) > < il >
Inode #6 Inode £6
Inode 47 <C#t> Inode &7 < CHT >

(¢} Inode Black Written
Inode Block Directory Block Inode Block Directory Block
Inscle: 44 < Ad4 > Inode #4 < A |
Redo Inode £5 =T Inode #5 T3] Create

Inode #6 Inode &6 (A)
Inode #7 =G> Inode #7 <CHT>

{d} Directory Block Written 17

i Journaling File Systems

= LFFS-file
= Write-ahead logging (WAL)
= Flush meta data to persistent storage before data
= Circular buffer

= Size of log proportional to amount of changing meta-
data (usually KB)

= Log space reclamation
= Periodic syncer daemon
= Forced checkpoints

Journaling File Systems

» LFFS-wafs
= Auxiliary file system
= Flexibility

= Log on a separate high speed disk to reduce
contention

= Asynchronous logs for performance

Structure of Journal

= Contains three types of data blocks

= Metadata: entire contents of a single block of
filesystem metadata as updated by the transaction

= Descriptor: describe other journal metadata blocks
(where they really live on disk)

= Header: contain head and tail of the journal,
sequence number, the journal is a circular
structure

20

LFFS Recovery

= Superblock has address of last checkpoint
= LFFS-file has frequent checkpoints
= LFFS-wafs much less frequent checkpoints

» First recover the log

= Read the log from logical end (backward
pass) and undo all aborted operations

= Do forward pass and reapply all updates that
have not yet been written to disk

File System Configurations

File System Configurations

[FFe Trndar] FFS
FFS-asyne FFS moumted witls the asyne option
Soft-Updates FFS mounted with Soft Updates
LFFs-file FFS augmented with a file log
mchronous
TFFS-wals-lsyne FFS augmented wilh a WAFS log
log writes are synchronous
TFFS-wals-lasyne FFS angmented with a WAFS log
log writes are asynchronous

LFFS-wafs-Jsyne FFS augmented with a W

LFFS-wafs-2asyne

log is on a separate disk
log writes are asynelronous

Table 1. File System Configurations. 22

System Comparison

= Semantics
= Durability
= Status of file system after a reboot
= Guarantees about the data in files
= Ability to provide atomicity

23

Feature Comparison

Feature File Systems

Metasdatn updates are synchromous [FFS,
LEFS-wafs-{12}sync
Meta-data npdates are asynchronous |Soft Updates
LFFS-file
LFFSawafi]12Jasyne
Meta-data updates arc atomic. LFFS-fle
LFFS-wafs-{12]*

File data blocks are freed m back- Seft Updates

ground
Weve data blocks are written before | 5ot Updates
imodes

Recovery requires full file system |FES
sean
Flecovery requires log replay LFFS.*

Recovery is non-deterministic and [FFS-asyne
may be impossible

Table 2. Feature Comparison. 24

Microbenchmark _
Results - :
LF + clustering
+
i indirect bjock
Create Performance ,‘/
) -3 i i '-.""\-_
« Drops in all curves. i I's
' ;y s

I Pl S
¥
/4 i 4

¥
S e r
¥
V. &
4 16 L2 2% 14 AR

Fik Size in KB ilog 2)

Figure 1. Create Performance as a Function of

File Skee.

i Macrobenchmark Results

Unbatch | Expire | Total
Absolute Time (in seconds)
TTS-msyme (B I [
-Large data set exceeds cache 77 8 70 i s e
. TS Tt T [
-Dependency rollbacks hit Soft-Updates 86 [
LFFS-file 0.95 u_lil 0.95
- 3 0.67 048 0.59
095 092 0.9
[X]] 067 [T
097 095 0.9

Netnews Results Normalized 1o FFS-asyne.
These results are based on a single nm, but we observed
liwle variation between multiple runs of any
configuration,

26

i Results Summary

= Soft updates excels in meta-data
intensive microbenchmarks
= Background deletes
= No disk 1/0 for 0-length file create/delete

= Macrobenchmark results are ambiguous

i Evaluation

= Soft-updates — just another way of doing
meta-data updates.

= Difficult to implement on FS which
implements directories as b-tree / hashes.

= Updates may proceed out of order.
= Eg. Create /dirl/a and then /dir2/b.

= Better parallelism due to fine-grained meta-
data updates.

28

i Evaluation

= Journaling widely adopted in industry (ext3,
VXFS, JFS)

= Journaling alone is not sufficient to “solve”
the meta-data update problem

= Cannot realize its full potential when synchronous
semantics are required

= Which method to choose -
= Depends heavily on your file system design goals

29

i Questions

30

i Delete Performance

Background deletes.

Throughpet (1000s of files

o |
1 16 &4 156 1024 4096

File Size in KB (log 2)

Figure 2. Delete Performance as s Function

of File Size. a2

i 0-length File Create/delete

10000
Fipaome «—————————————1— Best case
y Soft- Updases
L . -Asynchronous
E = -No disk 10
?: LFFS-mafi- lawyme
§ 1 rh LS 2asyee
- FS.mats 2oy
LFFS-wafi-1vyndg
' FFs ‘

Figure 3. 0-length File Create Delete Results in
Files per Secondl.

32

i Approaches

= Soft Updates
= Journaling

= Hardware techniques
= NVRAM
= MRAM

= Log-structured file systems (LFS)

33

