
1

Efficient Software-Based Fault
Isolation

Robert Wahbe,
Steven Lucco,

Thomas E. Anderson,
Susan L. Graham

Possible Means of Isolating Faults in
End-User Extensions
● Using an interpreted language to enable

End-User Extensions
● Writing the system in a type safe language

such as MODULA-3, tcl, or perl (e.g. SPIN).
● Hardware-based fault isolation methods such

as setting protection bits in the MMU to
restrict write access within the system's
address space (e.g. NOOKS).

● Modifying modules themselves to avoid
corruption outside of their address space
(e.g. SFI).

1

Problem Description

● Extensible applications demonstrate the
value of allowing end-users to modify the
behavior of the system.
– Operating Systems
– Web Browsers
– Database Systems

● Extensible systems must be protected from
possible instabilities in misbehaved end-user
extensions.

MISFIT: A Tool for Constructing Safe Extensible C++ Systems
Cristopher Small and Margo Seltzer2

Example cross-domain faults (in C++)
void unsafe()
{

char *bad = (char *) this;

bad -= <arbitrary>;

memset(bad, 0, 30);

}

void unsafe()
{

char name[20];

memset(name, 0, 300);

}

Encapsulating class
private data

Data corruption

Stack corruption

etc.

Store & Jump considered only
unsafe instructions across domains

3

Handling cross domain faults

● Place domain data in a contiguous region.
● Ensure that each contiguous region's virtual

addresses share a unique prefix.

Detection (segment matching):

dedicated := target
scratch := (dedicated>>shift)
if (scratch == segment)

store to dedicated
else

do error;

Prevention (sandboxing):

dedicated := target&mask
dedicated := dedicated| segment
store to dedicated

Dedicated, shift, mask, and segment are all dedicated
registers.4

Example Fault Domain
(unaligned)

Start address
0x2FCE

Domain Size= 255 (hex 00FF),
shift is log2 255 = 8

Segment identifier becomes
0x2FCE >> 8 = 0x002F

End address
0x30cd

5

2

Protection Domains are Strictly
Mutally Exclusive

A

B

C

Overlap

Overlap

Before Domain Restriction

Variables and
return values

After Domain Restriction

A

B

C

Since domains
are mutually
exclusive, cross
domain calls
are thus far
impossible.

6

Call Stubs (lightweight RPC)
Before Call Stubs

A

B

C

Since domains
are mutually
exclusive, cross
domain calls
are thus far
impossible.

After Call Stubs

A

B

C

Stubs copy across
variables and return
values and enable
cross domain calls.

Stub

Stub

● Call stubs enable functions to be called across
domains by copying data directly from one domain
into the other.

● Call stubs set dedicated registers and ensure
properly aligned data for representative segment
identifiers (context switching and alignment
enforcement). (alignment could also be done by the
compiler)7

Hardware vs Software Based Fault
Isolation
● Jump or Store Cost

– Check protection bit
in MMU / practically
free

● Changing Domains
– Reset protection bits

in the MMU/ flush
and reset the TLB

● Jump or Store Cost
– Addition of a

preamble to check
the target of the
Jump or Store

● Changing Domains
– Copy data into

dedicated registers
(5 registers), fairly
cheap.

8

Conclusion

● Fault isolation can be implemented in
software.

● Software based fault isolation adds a little
overhead to the common case.

● Software based fault isolation vastly
improves the performance of IPC.

● Applications that cross fault domains a lot
benefit a whole lot from software based fault
isolation, but even applications that spend
very little time crossing fault domains can
benefit.

9

Caveats

● SFI is not enough alone when commonly
used library functions such as bcopy, strcpy,
read, write, close, printf, etc. have not been
compiled using the SFI model.

● Safe versions of all commonly used library
calls that modify memory must be
implemented to avoid breaking the model.

● Safe languages like MODULA-3 may be able
to accomplish the same task at nearly the
same level with less overhead (but they are
not as popular of languages).

10

Evaluation

● SFI could also be extended to provide
security by extending isolation enforcement
to loads at some additional cost.

● Hardware Based fault isolation cannot benefit
from increasing or decreasing the level of
security, the dominating cost of
reprogramming the MMU and flushing the
TLB remains constant regarless of protection
type.

● SFI offers varying levels of protection at
varying costs, and has fairly low overhead.

11

3

Questions?

Any questions at all.

Thank you

Thank you very much.

