Improving the Reliability of
Commodity Operating Systems

Swift, M. M., Bershad, B. N., & Levy, H. M., Proc. of 19th ACM
Symposium on Operating Systems Principles, 2003.

(Also appeared in ACM Transactions on Computer Systems, 22(4), 2004).

Presented by Hari K. Pyla

Outline

* Introduction

» Previous work

» Motivation

* Nooks

« Architecture

» Implementation

» Performance

* Analysis and conclusions

Introduction

* What issues qualify a good Operating
System?
— Performance
— Functionality
— Scalability
— Reliability <—=

Introduction: Analysis of Crashes

Microsoft NT Microsoft 2000

Data obtained from http://nooks.cs.washington.edu/retreat.ppt

Introduction: Analysis of Crashes

Microsoft XP Linux

Previous Approaches

Name Description Used In
Kernel Verify all parameters on calls between | Microsoft
wrapping the kernel and device drivers Driver Verifier
Hardware Prevent device drivers from writing to Palladium,
memory kernel memory Shinagawa
protection
Privilege Prevent device drivers from executing [Exokernel
level privileged instructions and/or emulate
change privileged instructions 2=
Software Inject code into device drivers to Vino
fault ensure that addresses and instructions
isolation are safe
Safe Rely on the compiler/virtual machine to [SPIN
languages | allow only safe (non-faulting drivers to

6 be loaded

Comparison of Driver Safety

Approaches

Parameter Kernel | Hardware | Privilege | Software | Safe | Nooks

wrappi | memory | level fault langu

ng protection | change | isolation |2a9es
Requires rewriting No No No Maybe Yes No
driver
Easily supports No Yes Yes No No Yes
recovery
High performance | Yes No No Yes Yes Yes
for small data vol.
High performance Yes Yes Yes No No Yes
for large data vol.
Isolates memory No Yes Yes Maybe Yes Yes
corruption

Motivation

» Address the ever increasing system crashes
due to new OS extensions

« Bridge gap between OS kernel and Device
Drivers creators

« Differentiate crashes due to malicious intent
and programming errors

 Design for fault resistance not fault tolerance
« Interested in reliability, not security
* Retroactive solution

— With low overheads

— Backward compatibility, "Patch" style approach

Nooks: Overview

» Middleware that isolates OS and device
drivers
— Reliability subsystem to prevent driver failures
— Recovers quickly with no lost application state
— Requires only minimal change to the kernel

— Requires no source changes for most device
drivers

9
Isolation: Lightweight Kernel
Protection Domains
» Executes in kernel
ol - mode
o e * Is logically part of the
Kemel: RV kernel

o _— » Has read access to

BL1 AW BLLR kernel data
B B2M o Has restricted write

IPEHPE ™
Ketrel AW || ouers || Tae e ||l B 50cess to kernel data

£
.

fiKil

8
Nooks Layer Inside Linux OS
LL{ icati ‘ ‘ ‘ L‘—{ Daemon‘s“ ’m‘
‘ Linux Kernel ‘
‘ Nooks Isolation Manager ‘
Intepostion
Driver Interposition Kernel services
Driver Interposition
Driver ‘ Driver ‘ ’W‘
Device ‘ ‘ Device ‘ ‘ Device ‘ ‘ Device ‘
10
Architecture: Functions of NIM
05 Kemel « Isolation
L 11 1 . -
S ~ Interposition
AR RN § INTO;S « Object Tracking
T 0 : solation
858} E Vawr * RECOVETY
&
- /
T T T 1
Kemel Extensions
g

Architecture: "Isolation" in NIM

¢ Functionality Provided

— Prevent extension errors from damaging kernel
or other extensions

— create, manipulate and maintain domains
(Protection Domain Management)

— Inter domain control transfer
 Internals

— Memory management (create stacks, heaps,
sockets etc.)

— Extension Procedure Call (XPC)

2 e.g. nooks_driver_call() & nooks_kernel_call()

14

Architecture: "Interposition”

Functionality provided
— Transparently integrate extensions into Nooks
— Ensure kernel-extension control flow thru XPC

— Ensure data transfer between kernel and
extension is monitored by object-tracking code

Internals

— wrapper stubs

— Modified module loader

— Modified kernel module initialization code

— Function pointers from extension to kernel
replaced by wrapper pointers

Architecture: "Object Tracking"

¢ Functionality provided

— Maintain list of kernel data structures manipulated by an
extension

— Control modifications to structures
— Provide information for cleanup when extensions fail

 Internals

— Record addresses of kernel objects in use by an
extension

— Monitor lifetime of objects and perform garbage
collection

— Maintain per protection domain hash table, current task

i3 structure etc.

16

Architecture: "Recovery"

 Functionality provided

— Determination of whether to trigger recovery or
return error code to invoking extension

— Detection and recovery of various extension faults
(h/w and s/w)

Internals

— Disable interrupt processing

— Start user mode recovery agent

— release resources in use by extension

— change configuration

— Replace, reload and restart extensions

Working of Nooks: An Example

* New USB device connected: driver gets loaded

» Loader invokes Nooks wrapper stubs at Nooks
kernel runtime interface

* Wrapper intercepts the call invoking object
tracking code

— manage parameters passed between the
kernel and driver or vice versa

— Wrapper transfers control from caller’s to
callee’s domain and vice versa using XPC

» Neither driver nor kernel is aware of existence of
17 Nooks layer!

18

» Time: 18 months Recovery 1,136
* Language used: C

Implementation
e OS: Linux | Source Components H # Lines ‘
Memory Management 1,882
e Kernel: 2.4.18 Object Tracking 1454
o Hardware: Intel x86 Extension Procedure Call 0

Wrappers 14,39

Linux Kernel Changes 924
Miscellaneous 2,074
Total number of lines of code 22,266

19

Performance and Reliability

System Crashes

O Native = Nooks -

160 —

200

120 —

Number of crashes

o -
sb e1000 pcnet32 VFAT KHTTPd
Extension under test

20

Performance and Reliability

Overhead Benchmarks

Benchmark Extension XPC Nooks Nooks
Rate Relative CPU

(ver sec) || Performance Uil (%)
Play-mp3 sh 1 4.6
Receive-stream 1000 (receiver) 0.92 155
Send-stream ¢1000 (sender) 091 214 39.3
Compile-local VFAT 0.78 975 96.8
Serve-simple-web-page | kHTTPd (server) | 61,183 0.44 96.6 96.8
Serve-complex-web-page | el000 (server) 1,960 0.97 90.5 92.6

210

Nooks: Limitations

Does not provide complete fault tolerance
Cannot prevent extensions from deliberately
executing privileged instructions

Does not prevent infinite loops inside
extensions

Can perform only a static check in terms of
parameters passed

Recovery is limited to drivers that can be
killed and restarted safely

22

Analysis and Conclusions

Drivers limit OS reliability, are major source of
failures

OS should remove dependence on driver safety
Existing OS can be extended to run existing
driver code safely

Nooks philosophy is practical and can be easily
incorporated

Nooks lightweight kernel protection domains
support reliable driver execution by

* Preventing kernel corruption

e Supporting existing driver API

23

Thank you

