
1

Improving the Reliability of
Commodity Operating Systems

Swift, M. M., Bershad, B. N., & Levy, H. M., Proc. of 19th ACM
Symposium on Operating Systems Principles, 2003.

(Also appeared in ACM Transactions on Computer Systems, 22(4), 2004).

Presented by Hari K. Pyla

2

Outline

• Introduction
• Previous work
• Motivation
• Nooks
• Architecture
• Implementation
• Performance
• Analysis and conclusions

3

Introduction

• What issues qualify a good Operating
System?
– Performance
– Functionality
– Scalability
– Reliability

4

Introduction: Analysis of Crashes

Microsoft NT Microsoft 2000

Data obtained from http://nooks.cs.washington.edu/retreat.ppt

5

Introduction: Analysis of Crashes

LinuxMicrosoft XP

6

Previous Approaches

SPINRely on the compiler/virtual machine to
allow only safe (non-faulting drivers to
be loaded

Safe
languages

VinoInject code into device drivers to
ensure that addresses and instructions
are safe

Software
fault
isolation

ExokernelPrevent device drivers from executing
privileged instructions and/or emulate
privileged instructions

Privilege
level
change

Palladium,
Shinagawa

Prevent device drivers from writing to
kernel memory

Hardware
memory
protection

Microsoft
Driver Verifier

Verify all parameters on calls between
the kernel and device drivers

Kernel
wrapping

Used InDescriptionName

2

7

Comparison of Driver Safety
Approaches

YesYesMaybeYesYesNoIsolates memory
corruption

YesNoNoYesYesYesHigh performance
for large data vol.

YesYesYesNoNoYesHigh performance
for small data vol.

YesNoNoYesYesNoEasily supports
recovery

NoYesMaybeNoNoNoRequires rewriting
driver

NooksSafe
langu
ages

Software
fault
isolation

Privilege
level
change

Hardware
memory
protection

Kernel
wrappi
ng

Parameter

8

Motivation

• Address the ever increasing system crashes
due to new OS extensions

• Bridge gap between OS kernel and Device
Drivers creators

• Differentiate crashes due to malicious intent
and programming errors

• Design for fault resistance not fault tolerance
• Interested in reliability, not security
• Retroactive solution

– With low overheads
– Backward compatibility, "Patch" style approach

9

Nooks: Overview

• Middleware that isolates OS and device
drivers
– Reliability subsystem to prevent driver failures
– Recovers quickly with no lost application state
– Requires only minimal change to the kernel
– Requires no source changes for most device

drivers

10

Nooks Layer Inside Linux OS
Daemons

Nooks recovery agent

Linux Kernel

Nooks Isolation Manager Kernel services

Kernel services

Kernel services

Driver

Device

Applications

Interposition

Driver

Driver

Driver

Interposition

Driver

Interposition

Kernel
services

DeviceDevice Device

11

Isolation: Lightweight Kernel
Protection Domains

• Executes in kernel
mode

• Is logically part of the
kernel

• Has read access to
kernel data

• Has restricted write
access to kernel data

12

Architecture: Functions of NIM

• Isolation
• Interposition
• Object Tracking
• Recovery

3

13

Architecture: "Isolation" in NIM
• Functionality Provided

– Prevent extension errors from damaging kernel
or other extensions

– create, manipulate and maintain domains
(Protection Domain Management)

– Inter domain control transfer
• Internals

– Memory management (create stacks, heaps,
sockets etc.)

– Extension Procedure Call (XPC)
e.g. nooks_driver_call() & nooks_kernel_call() 14

Architecture: "Interposition"

• Functionality provided
– Transparently integrate extensions into Nooks
– Ensure kernel-extension control flow thru XPC
– Ensure data transfer between kernel and

extension is monitored by object-tracking code
• Internals

– wrapper stubs
– Modified module loader
– Modified kernel module initialization code
– Function pointers from extension to kernel

replaced by wrapper pointers

15

Architecture: "Object Tracking"
• Functionality provided

– Maintain list of kernel data structures manipulated by an
extension

– Control modifications to structures
– Provide information for cleanup when extensions fail

• Internals
– Record addresses of kernel objects in use by an

extension
– Monitor lifetime of objects and perform garbage

collection
– Maintain per protection domain hash table, current task

structure etc. 16

Architecture: "Recovery"

• Functionality provided
– Determination of whether to trigger recovery or

return error code to invoking extension
– Detection and recovery of various extension faults

(h/w and s/w)

• Internals
– Disable interrupt processing
– Start user mode recovery agent
– release resources in use by extension
– change configuration
– Replace, reload and restart extensions

17

Working of Nooks: An Example
• New USB device connected: driver gets loaded
• Loader invokes Nooks wrapper stubs at Nooks

kernel runtime interface
• Wrapper intercepts the call invoking object

tracking code
– manage parameters passed between the

kernel and driver or vice versa
– Wrapper transfers control from caller’s to

callee’s domain and vice versa using XPC
• Neither driver nor kernel is aware of existence of

Nooks layer! 18

Implementation

• OS: Linux
• Kernel: 2.4.18
• Hardware: Intel x86
• Time: 18 months
• Language used: C

4

19

Performance and Reliability

20

Performance and Reliability

Overhead Benchmarks

21

Nooks: Limitations

• Does not provide complete fault tolerance
• Cannot prevent extensions from deliberately

executing privileged instructions
• Does not prevent infinite loops inside

extensions
• Can perform only a static check in terms of

parameters passed
• Recovery is limited to drivers that can be

killed and restarted safely
22

Analysis and Conclusions
• Drivers limit OS reliability, are major source of

failures
• OS should remove dependence on driver safety
• Existing OS can be extended to run existing

driver code safely
• Nooks philosophy is practical and can be easily

incorporated
• Nooks lightweight kernel protection domains

support reliable driver execution by
• Preventing kernel corruption
• Supporting existing driver API

23

Thank you

