The CGoogle File System

Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung : : : Y
Google (XX X J
[X X J
Vijay Kumar : i
[X J
[

Outline

e Introduction

e Goals

e Architecture

e Operations Supported
e Master Operations

e Performance

e Conclusion

1012112005

File System for Google

o A new distributed file system developed to
meet the demands of Google’s application
workloads and technological environment

o Shares many of the same goals as the other
distributed file systems

10/21/2005 3

Technological environment

e Clusters of more than 15,000 commodity class PCs
e Hardware prone to failure
e Fault tolerant software

r“‘—
Te

Source: "Web Search for a Planet: The Google Cluster Architecture”

Index Servers

1012112005

Application Workloads

e Sequential reads
o Indexer reading the contents of web pages

e Frequent Appends
o Crawler appending new pages

o Files used as Producer - Consumer queues
o Indexer waits for the crawler to retrieve contents

o Files used for multi-way merging

1012112005 s

GFS - Motivation

e Component failures - norm rather than
exception

o Efficient management of large files

e Optimization of frequently performed
operations

o Flexibility of co-designing application and
file system

1012112005

GFS - Goals

o Reliability, availability, scalability...

o Tolerance to hardware failures

e Managing numerous files of large size

o Optimizing commonly performed operations

10/21/2005 7

GFS Architecture
ctadate File Namespace

GFS Client {
; I
/ 1

Instructions to chunkserver
Chunkserver state|

(Data) = | [(eFs
[Linux file system |

[Linux file system |

== Data messages
—— Control messages
Chunks

eSingle master
eMultiple chunkservers

eMaster stores metadata
eChunkservers store data
eMultiple clients eCommunication via heartbeat messages

1012112005

GFS Architecture (contd)

o Files are broken into fixed sized chunks

o Chunks are identified by unique chunk
handles

e Chunks are stored in chunkservers
e Fixed chunk size - 64 MB

10/21/2005 o

GFS Operations

o File open, close ...
e Data reads

e Data Mutations
e Random writes
e Record appends
e Snapshot

1012112005

Data Read §°.§

GFS Master .-»_Ifoofbar

— hunk i .
Application fle name, chunk IN9eX) . Namespace Chunk 2610

i (chunk handle, H
GFSClient | 0ok locations) /gt i

Instructions to chunkserver
Chunkserver state|

| GFS chunkserver ‘ ‘ GFS chunkserver ‘
‘ Linux file system ‘ ‘ Linux file system ‘

(chunk handle, byte range)

chunk data

m— Data messages
— Comrolmessages L= L= ..
= Chunks

Source; Uma Murthy’s presentation on GFS, Fall ‘04

1012112005 1

Data Mutations

e Two kinds of data mutations are supported
e Random writes
e Record appends

e Record appends much more frequent than
random writes

e Concurrent appends are common

e Leases used to maintain consistent mutation
order

1012112005

Data Mutations (contd)

o Relaxed consistency model to support
applications
o Relatively simple and efficient to implement
o GFS guarantees
e Atomic file namespace mutations

o State of a file region after a data mutation
depends on type of mutation, success or failure,
Ppresence or absence of concurrent mutations

10/21/2005 13

Data Mutations (contd)

Write Record Append
Serial defined defined
success interspersed with
Concurrent | consistent inconsistent
successes but undefined
Tailure inconsistent

o Consistent file region - All client will see the same data,
regardless of the replicas they read from

o Defined file region - It is consistent and clients see what
mutations writes in its entirety

e Applications have to deal with the relaxed consistency

1012112005 14

Data Writes

1. Client requests for
1
ease holder anFl ‘ :
secondary replicas

3
Secondary
Replica A I
Primary
Replica
Secondary lI

ReplicaB

2. Master responds

3. Client pushes out data
to the replicas

4. Client issues write
instruction to primary
replica

— Data

— conrnl

10/21/2005 15

Data Writes (contd)

5. Primary forwards
. . write request to other

li
N replicas
Secondary
Repl
Primary
Replica
Secondary
Replica B

1012112005 16

6. Secondaries respond
to primary reporting
the status of the write

7. Primary reports the

- status to the client

— control

Record Appends

o Appends record to the file atomically (i.e., as
a continuous sequence of bytes)

o Appended at an offset chosen by primary

e Pads chunks if append is expected to cross
the boundary. Secondaries also do so. New
chunk has to be allocated in this case

e Offset returned to the client on success
o Client retries on failure

1012112005 17

Snapshot

e Makes a copy of a file or directory tree
e Based on copy-on-write technique
e Minimal overhead involved

1012112005 18

Master Operation

e Master is responsible for
o Metadata management
o Namespace management
e Replica management
e Garbage Collection

10/21/2005 19

Metadata Management

e Master stores the following metadata
e File and chunk namespaces - stored persistently
e File to chunk mapping - stored persistently
e Chunk replica locations - queries chunkserver

e Operation Log - historic record of metadata
changes

e Replicated on multiple remote machines

e Size kept small by checkpointing

1012112005

Name Space Management

e Does not have a per directory data structure
e No support for aliases
e Namespace represented as lookup

e Files and directories have associated read and
write locks

10/21/2005 21

Replica Management

e Chunk replicas created for
o New chunk creation
e Chunk re-replication
o Chunk rebalancing
o Chunk replicas placement based on
e Maximizing data reliability and availability
e Maximizing network utilization
o Chunkserver’s disk utilization, count of recent
chunks, rack position affect desicions

1012112005

Garbage Collection

o Reclamation of physical storage
o Files renamed to hidden names upon deletion
o File metadata deleted during namespace scan

o Physical storage freed during exchange of Heart
Beat messages

o Stale Replica Detection
o Stale chunks detected using chunk version number

1012112005 23

GFS Goals revisited

o Availability
o Fast recovery
o Chunk replication
e Master replication
e Scalability
o Master replication

o Keeping master’s involvement limited in data
transactions

1012112005

GFS Goals revisited (contd)

o Fault Tolerance

e Replication, constant monitoring, fast recovery
o Data Integrity

o Checksumming used to detect corruption
o Optimization for frequent operations

o Relaxed consistency model

10/21/2005 2

Performance

e Micro benchmarks
e Aggregate read rate - 75% of theoretical limit
o Aggregate write rate - 50% of theoretical limit

Network lisit
Nerwork Emit

T T
Namber of clests N

b) Writes

1012112005 2

Performance (contd)

e Real world clusters

et
Kumber of Dead files
Number of Chunks
Teadua at dunbervers T
Mesadata st master sM

T
w | B8 Opmje
s | 27 Cumis

60 MB

10/21/2005 27

Performance (contd)

e Workload breakdown

1012112005 2

Conclusion

e Demonstrates qualities needed to support
large scale data processing workloads on
commodity hardware

o Delivers high throughput
e Successfully meets Google’s storage needs

1012112005 20

Questions?

1012112005 20

