
1

The File System

Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung
Google

Vijay Kumar

10/21/2005 2

Outline

Introduction
Goals
Architecture
Operations Supported
Master Operations
Performance
Conclusion

10/21/2005 3

File System for Google

A new distributed file system developed to
meet the demands of Google’s application
workloads and technological environment
Shares many of the same goals as the other
distributed file systems

10/21/2005 4

Technological environment
Clusters of more than 15,000 commodity class PCs
Hardware prone to failure
Fault tolerant software

Source: "Web Search for a Planet: The Google Cluster Architecture"

Google Web
Server

Ad
Server

Spell
Checker

Index Servers Document Servers

Google Web
Server

Ad
Server

Spell
Checker

Index Servers Document Servers

10/21/2005 5

Application Workloads

Sequential reads
Indexer reading the contents of web pages

Frequent Appends
Crawler appending new pages

Files used as Producer – Consumer queues
Indexer waits for the crawler to retrieve contents

Files used for multi-way merging

10/21/2005 6

GFS – Motivation

Component failures – norm rather than
exception
Efficient management of large files
Optimization of frequently performed
operations
Flexibility of co-designing application and
file system

2

10/21/2005 7

GFS - Goals

Reliability, availability, scalability…
Tolerance to hardware failures
Managing numerous files of large size
Optimizing commonly performed operations

10/21/2005 8

GFS Architecture

Application

GFS Client

Application

GFS Client

GFS Master
File Namespace

/foo/bar
chunk 2ef0

GFS Master
File Namespace

/foo/bar
chunk 2ef0

Linux file system

GFS chunkserver

Linux file system

GFS chunkserver

Linux file system

GFS chunkserver

Linux file system

GFS chunkserver

(Metadata)

Instructions to chunkserver

Chunkserver state

Data messages

Control messages

Data messages

Control messages ……. …….

Chunks

(Data)

Master stores metadata
Chunkservers store data
Communication via heartbeat messages

Single master
Multiple chunkservers
Multiple clients

10/21/2005 9

GFS Architecture (contd)

Files are broken into fixed sized chunks
Chunks are identified by unique chunk
handles
Chunks are stored in chunkservers
Fixed chunk size – 64 MB

10/21/2005 10

GFS Operations

File open, close …
Data reads
Data Mutations

Random writes
Record appends

Snapshot

10/21/2005 11

Data Read

Application

GFS Client

GFS Master
File Namespace

/foo/bar
chunk 2ef0

Linux file system

GFS chunkserver

Linux file system

GFS chunkserver

(file name, chunk index)

(chunk handle,
chunk locations)

(chunk handle, byte range)

chunk data

Instructions to chunkserver

Chunkserver state

Data messages

Control messages ……. …….

Chunks

Application

GFS Client

Application

GFS Client

GFS Master
File Namespace

/foo/bar
chunk 2ef0

GFS Master
File Namespace

/foo/bar
chunk 2ef0

Linux file system

GFS chunkserver

Linux file system

GFS chunkserver

Linux file system

GFS chunkserver

Linux file system

GFS chunkserver

(file name, chunk index)

(chunk handle,
chunk locations)

(chunk handle, byte range)

chunk data

Instructions to chunkserver

Chunkserver state

Data messages

Control messages

Data messages

Control messages ……. …….

Chunks

Source: Uma Murthy’s presentation on GFS, Fall ’04

10/21/2005 12

Data Mutations

Two kinds of data mutations are supported
Random writes
Record appends

Record appends much more frequent than
random writes
Concurrent appends are common
Leases used to maintain consistent mutation
order

3

10/21/2005 13

Data Mutations (contd)

Relaxed consistency model to support
applications
Relatively simple and efficient to implement
GFS guarantees

Atomic file namespace mutations
State of a file region after a data mutation
depends on type of mutation, success or failure,
presence or absence of concurrent mutations

10/21/2005 14

Data Mutations (contd)

Consistent file region – All client will see the same data,
regardless of the replicas they read from
Defined file region – It is consistent and clients see what
mutations writes in its entirety
Applications have to deal with the relaxed consistency

10/21/2005 15

Data Writes
1. Client requests for

lease holder and
secondary replicas

2. Master responds
3. Client pushes out data

to the replicas
4. Client issues write

instruction to primary
replica

Client Master

Secondary
Replica A

Secondary
Replica B

Primary
Replica

1

2
3

4

5

6

6

7

Data

Control

Client Master

Secondary
Replica A

Secondary
Replica B

Primary
Replica

1

2
3

4

5

6

6

7

Data

Control

10/21/2005 16

Data Writes (contd)
5. Primary forwards

write request to other
replicas

6. Secondaries respond
to primary reporting
the status of the write

7. Primary reports the
status to the client

Client Master

Secondary
Replica A

Secondary
Replica B

Primary
Replica

1

2
3

4

5

6

6

7

Data

Control

Client Master

Secondary
Replica A

Secondary
Replica B

Primary
Replica

1

2
3

4

5

6

6

7

Data

Control

10/21/2005 17

Record Appends

Appends record to the file atomically (i.e., as
a continuous sequence of bytes)
Appended at an offset chosen by primary
Pads chunks if append is expected to cross
the boundary. Secondaries also do so. New
chunk has to be allocated in this case
Offset returned to the client on success
Client retries on failure

10/21/2005 18

Snapshot

Makes a copy of a file or directory tree
Based on copy-on-write technique
Minimal overhead involved

4

10/21/2005 19

Master Operation

Master is responsible for
Metadata management
Namespace management
Replica management
Garbage Collection

10/21/2005 20

Metadata Management

Master stores the following metadata
File and chunk namespaces – stored persistently
File to chunk mapping – stored persistently
Chunk replica locations – queries chunkserver

Operation Log – historic record of metadata
changes
Replicated on multiple remote machines
Size kept small by checkpointing

10/21/2005 21

Name Space Management

Does not have a per directory data structure
No support for aliases
Namespace represented as lookup
Files and directories have associated read and
write locks

10/21/2005 22

Replica Management

Chunk replicas created for
New chunk creation
Chunk re-replication
Chunk rebalancing

Chunk replicas placement based on
Maximizing data reliability and availability
Maximizing network utilization

Chunkserver’s disk utilization, count of recent
chunks, rack position affect desicions

10/21/2005 23

Garbage Collection

Reclamation of physical storage
Files renamed to hidden names upon deletion
File metadata deleted during namespace scan
Physical storage freed during exchange of Heart
Beat messages

Stale Replica Detection
Stale chunks detected using chunk version number

10/21/2005 24

GFS Goals revisited

Availability
Fast recovery
Chunk replication
Master replication

Scalability
Master replication
Keeping master’s involvement limited in data
transactions

5

10/21/2005 25

GFS Goals revisited (contd)

Fault Tolerance
Replication, constant monitoring, fast recovery

Data Integrity
Checksumming used to detect corruption

Optimization for frequent operations
Relaxed consistency model

10/21/2005 26

Performance
Micro benchmarks

Aggregate read rate – 75% of theoretical limit
Aggregate write rate – 50% of theoretical limit

10/21/2005 27

Performance (contd)
Real world clusters

10/21/2005 28

Performance (contd)

Workload breakdown

10/21/2005 29

Conclusion

Demonstrates qualities needed to support
large scale data processing workloads on
commodity hardware
Delivers high throughput
Successfully meets Google’s storage needs

10/21/2005 30

