
1

1

Capriccio: Scalable Threads 
for Internet Services

Matthew Phillips

2

Overview

• Motivation
• Background

• History
• Threads vs. event based systems
• User-level threads vs. kernel threads

• Capriccio
• Linked stacks
• Resource-aware scheduler

• Evaluation

3

Motivation

• High concurrency
• Internet servers can have requests for 

hundreds of thousands of connections.
• Simplify programming model.

4

Background

• History
• Why threads are a bad idea (for most 

purposes), John Ousterhout. Sun Labs. 
1996.

• Race conditions, deadlocks, not scalable, etc.
• Popularity of Internet about the same time

• Heavy demand on web servers

5

Background

• History
• Need for high concurrency servers

• Flash
• SEDA

• Interest in systems other than thread based 
systems.

• Event based systems
• Problem: Event based systems are sometimes 

difficult to use.
• Programmers prefer linear program control

6

Background

• History
• Instead of making event based systems 

more usable, “fix” thread based systems.
• Investigate ways to make thread based 

systems more scalable.
• Authors presented Why events are a bad 

idea (for high-concurrency servers). 2003
• On the duality of operating system structures, 

Lauer, Needham.1978. 



2

7

Background

• Why threads?
• Can have equal or better performance

• More desirable programming model
• Programmers prefer linear program control

• Existing systems use threads

8

Background

• Kernel threads
• Systems calls

• open, read, send, receive

• User-level threads
• User-level libraries

9

Background

• User-level threads
• Advantages:

• Flexibility: A level away (abstraction) from 
kernel. Decouples applications and kernel.

• Performance: User-level threads are 
lightweight: Inexpensive synchronization, fast 
context switches

• Thus, user-level threading is used.

10

Background

• Created user-level threading library for 
Linux

• All thread operations are O(1)
• Now scalable

11

Capriccio

• Linked stacks
• Traditional call stacks
• LinuxThreads allocates 2 megabytes per thread
• Most threads only consume a few kilobytes
• Lots of wasted virtual memory

• 32 bit system has 4 gigabyte limit

12

Capriccio

• Uses weighted call graphs
• Perform a whole-program analysis

• CIL used to read source

• Each function is a node
• Each edge is a function call
• Node weights are calculated from stack frames



3

13

Capriccio

• Node weights
int sample()
{

int a, b;
int c[10];
double d;
char e[8036];
return 0;

}

14

Capriccio

• Example

Path from Main->A->B is 2.3k

15

Capriccio

• Example
main(){char buf[512]; A(); C();}
void A(){char buf[820]; B(); D();}
void B(){char buf[1024];}
void C(){char buf[205]; D(); E();}
void D(){char buf[205];}
void E(){char buf[205]; C();}

16

Capriccio

• Linked stacks
• Recursion complicates things
• Use checkpoints to deal with recursion

17

Capriccio

• Placement of checkpoints
• Break each cycle with checkpoint
• Additional checkpoints

• Longest path from node to checkpoint, if 
predefined limit is exceeded, add 
checkpoint

18

Capriccio

• Example



4

19

Capriccio

• Resource aware scheduling
• Uses blocking graph

• Node is location in program that is blocked
• Node is composed of call chain used to reach 

blocking point

20

Capriccio

• Resource aware scheduling
• Edges are annotated with average running 

time - time it took the thread to pass 
between nodes

• Nodes are annotated with resources used
on its outgoing edges.

21

Capriccio

• Resource aware scheduling

22

Capriccio

• Evaluation
• Apache
• Compared with Knot
• Compared with Haboob

23

Capriccio

• Evaluation

15% speedup with Capriccio


