
Virtual-Time Round-Robin:
An O(1) Proportional Share Scheduler

By Jason Nieh, etc

Xiaojun Wang
10/07/2005

OS Fall 2005 2 Oct. 07, 2005

Outline

Proportional Share Scheduling
Weighted Round Robin
Weighted Fair Queueing
Virtual-Time Round-Robin
Summary

OS Fall 2005 3 Oct. 07, 2005

Proportional Share Scheduling

Given a set of clients with associated weights, a
proportional share scheduler should allocate
resources to each client in proportion to its respective
weight.
Why useful?

Administrative Purposes
− Allocate resource to users according to their weights

(for example, money they pay)
QoS Goals
− Video, audio applications (minimize jitter)

OS Fall 2005 4 Oct. 07, 2005

Evaluation Criteria

Two Evaluation Criteria
Accuracy of proportional sharing
Scheduling overhead

VTRR
High proportional sharing accuracy (WFQ)
Low scheduling overhead (RR)

OS Fall 2005 5 Oct. 07, 2005

Proportional Fairness

Some notations
The proportional share of client A

The amount of service received by A
during time interval (t1, t2).

The service time error for A over (t1, t2)

The goal of a proportional share scheduler is to minimize E
over all time intervals.

AS
),(21 ttWA

),(21 ttEA

∑
−−=

i i

A
AA S

SttttWttE)(),(),(122121

OS Fall 2005 6 Oct. 07, 2005

Weighted Round Robin

Algorithm
Clients are placed in a queue and executed in turn (same
frequency).
When being executed, each client is assigned a time
quantum equal to its share (adjustable time quantum size).

Evaluation
Low scheduling overhead: O(1)
Weak proportional fairness guarantee. The service time
error can be quite large, especially when the share values
are large.

OS Fall 2005 7 Oct. 07, 2005

Weighted Fair Queueing

Originally invented for scheduling network packets.
Maintain a queue of clients sorted by their virtual
finishing time, each time select the client with the
smallest VFT.

Different frequency, same time quantum size.
Evaluation

Good proportional sharing accuracy.
High scheduling overhead: O(n), O(log n)

OS Fall 2005 8 Oct. 07, 2005

Virtual Time

Virtual Time: a measure of the degree to which a
client has received its proportional allocation, relative
to other clients.

Virtual Finishing Time: the virtual time the client would
have after executing for one time quantum.

Q: time quantum, the duration of a standard time slice assigned to
a client to execute

A

A
A S

tWtVT)()(=

A
AAA S

QtVTQtVTtVFT +=+=)()()(

suppose A is executed
during (t, t+Q)

OS Fall 2005 9 Oct. 07, 2005

An Example of WFQ

Goal of WFQ:
Make all clients’ VT
grow as even as
possible.

Executing Sequence
ABAABC

0

1

VT

C: 1B: 2A: 3

VT
VFT

OS Fall 2005 10 Oct. 07, 2005

An Example of WFQ

Service Time Error in time interval (0, t)

Note the sum of the Errors of all clients is 0, and each client’s
Error becomes 0 at the end of each cycle.

Service Time Error

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6

Time

Er
ro

r EA(0, t)
EB(0, t)
EC(0, t)

Never falls
below -1

OS Fall 2005 11 Oct. 07, 2005

Virtual-Time Round-Robin

An accurate, low-overhead proportional share
scheduler which combines the benefits of WRR and
WFQ.
Overview of Algorithm

Sort clients in the run queue in descending order of their
shares.
Starting from beginning, run each client for one fixed time
quantum. (reason of O(1))
Jump back to the beginning if a client has received more
allocation than ideal case.

OS Fall 2005 12 Oct. 07, 2005

Client’s State

Five values for each client:
Share: used to sort the clients in the queue.
VFT: used to decide when to jump back to the beginning
(VFT inequality).
Time counter:
− Reset to share value at the beginning of each scheduling cycle.
− Decrease by one when received a time quantum.
− Become 0 at the end of each scheduling cycle.
− Used to ensure perfect fairness is achieved at the end of each

cycle.
ID number
Run state: runnable or not

OS Fall 2005 13 Oct. 07, 2005

Scheduler’s State

Run queue, time quantum, total shares
Queue virtual time: a measure of what a client’s VFT
should be if it has received exactly its proportional
share allocation.

Goal of the algorithm: to make the VT of each client to
be as close to QVT as possible.

∑
+=+

i iS
QtQVTQtQVT)()(

OS Fall 2005 14 Oct. 07, 2005

VTRR Algorithm

time counter invariant:
for any two consecutive
clients in the queue A and B,
the counter value for B must
always be no greater than
the counter value for A.
VFT inequality:

For current client:
Decrease timer counter

Update VFT

Move to
next client

time counter
invariant

VFT inequality

Jump to
beginning

Unsatisfy

Satisfy

Unsatisfy

Satisfy
C

C S
QQtQVTtVFT <+−)()(

)(QtVTC +=

OS Fall 2005 15 Oct. 07, 2005

An Example of VTRR

1

5/6

4/6

3/6

2/6

1/6

0

QVT

203/204/306

203/20115

2011114

20112/323

11112/322

111/222/321

111/221/330

VFTTCVFTTCVFTTC

C: 1B: 2A: 3

T
Time counter invariant

VFT inequality:

Execution Sequence
ABCABA

Current
Current S

QQtQVTtVFT <+−)()(

previousTCTC ≤

2 <= 2

1/2 - 2/6 < 1/2

1 <= 1

1 - 3/6 < 11 - 5/6 < 1/2

Execute Check conditions

OS Fall 2005 16 Oct. 07, 2005

An Example of VTRR

Virtual Time Grow Pattern
Virtual Time

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9 10 11 12

of Time Quantums

V
ir

tu
al

 T
im

e A
B
C
QVT

Goal of VTRR:
make each client’s VT

stay close to QVT

OS Fall 2005 17 Oct. 07, 2005

An Example of VTRR

Service Time Error in time interval (0, t)

Service Time Error

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 1 2 3 4 5 6

Time

Er
ro

r EA(0, t)
EB(0, t)
EC(0, t)

OS Fall 2005 18 Oct. 07, 2005

Dynamic Considerations

An on-line scheduling algorithm allows clients to be
dynamically created, terminated, change run state,
and change their share values.
Insert client to running queue

How to determine new client’s initial VFT and time counter?
Remove non-runnable client from the queue

Last-previous and last-next pointers.

Change client’s position in the queue
Remove, re-insert.

OS Fall 2005 19 Oct. 07, 2005

Complexity

O(1)
Select a client for execution
Update current client’s variables
Check next client
Remove client from the queue

Higher order operations:
Sort the running queue: O(N logN) infrequent
Reset time counter: O(N) / length(scheduling cycle)
Insert client to the queue:
− O(N) or O(log N), infrequent
− O(1) last-previous & last-next
− can be done in O(1) if the range of share values is fixed

OS Fall 2005 20 Oct. 07, 2005

Accuracy: Simulation Result

VTRR vs. WRR service time error

OS Fall 2005 21 Oct. 07, 2005

Accuracy: Simulation Result

VTRR vs. WFQ service time error

OS Fall 2005 22 Oct. 07, 2005

Overhead: Experiment Result

Scheduling overhead

OS Fall 2005 23 Oct. 07, 2005

Summary

VTRR
High proportional sharing accuracy (comparable to WFQ)
Low scheduling overhead (O(1))
Easy to implement (add/change < 100 lines of code in
Linux)

A promising solution for scheduling in large scale
server systems.
Progress

Group Ratio Round-Robin: O(1) Proportional Share
Scheduling for Uniprocessor and Multiprocessor Systems

OS Fall 2005 24 Oct. 07, 2005

Thank you!

Questions?

