
1

Extensibility, Safety
and Performance in
the SPIN Operating
System

Presented by Allen Kerr

Overview

Background and Motivation
Modula-3
SPIN architecture
Benchmarks
Conclusion

Hardware Vs Software Protection

Hardware
One-size-fits-all approach to system calls
Requires software abstraction

Software
Applications tell the system what needs to be done
Allows checks to be optimized using assumptions
Allows untrusted user code to be safely integrated
into the kernel

How Network Video works

How It Ought to Be Motivation

Taken from talk “Language Support for Extensible Operating Systems”

2

Modula-3
Similar feature set to Java

Pointer safety
Exceptions
Interfaces
Modules
Static Type Checking
Dynamic Linking

Concerns
Execution Speed
Threads, allocation, and garbage collection
Memory Usage
Mixed-Language Environment

SPIN

Kernel programmed almost exclusively in
Modula-3
Applications can link into kernel
Examples of services

Filing and buffer cache management
Protocol processing
Scheduling and thread management
Virtual memory

Further SPIN Motivation

Most OSs balance generality with specialization
General systems run many programs but run
few well
Specializing general operating system

Costly
Time consuming
Error-prone

Goals

Extensibility
Allow applications to extend any service

Performance
Dynamically inject application code into the kernel

Safety
Rely on language protection for memory safety
Rely on interface design for component safety

SPIN System Components Related Work

Hydra
Applications manage resources
High overhead

Microkernels
High communication overhead

Software Fault Isolation
May lack necessary flexibility

Aegis
Same goals as SPIN, different implementation

3

SPIN Architecture

Co-location
Low cost communication between system and
extensions

Enforced modularity
Extensions written in modula-3

Logical protection domains
Namespaces

Dynamic call binding
Calls respond to system events.

Protection Model
Defines a set of accessible names
Language level protection

If you have the reference, you have access
Code is safe if signed by a modula-3 compiler
Create

Creates a new domain
Safe object file
Leaves imported interface symbols unresolved

Resolve
Dynamic linking
Resolves undefined symbols

Combine
Combines 2 existing domains

Example Extension Model
Determines the ease, transparency and efficiency of extensibility
Communication styles

Passive monitoring
Offer hints to the system
Replace current functionality

Events
Announcement to the system
Request for service

Handlers
Procedure that receives a message
Registered through central dispatcher

Right to call procedure is equivalent to right to raise an event

Core Service

Kernel services that control hardware
resources

Extensible Memory Management
Extensible Thread Management

Extensible Memory Management

Three main interfaces
Physical Storage (Physical Addressing)

Use of pages
Allocation of pages
Controlled by core services

Naming (Virtual Addressing)
Bind to a process
Controlled by references

Translation
Raises exceptions related

Does not implement memory management directly
Provide base for higher levels

4

Memory management interfaces Extensible Thread Management

Applications can link their thread package
No defined thread model
Defines structure to build thread model on

Strands
Set of events

Block
Unblock

Management only effects outside of kernel

Thread Interfaces Implications for Trusted Services

Core services interact with hardware
They must follow their specifications
Trust is required for extension building

System Performance

System Size
Measured by lines of code and object size

Microbenchmarks
Low level system services

Networking
Suite of network protocols

End-To-End Performance
Show performance of two applications

Microbenchmark results

Shows a significant performance increase

5

Conclusions

SPIN Demonstrates
Good performance
Extensibility
Safety
Ability to rely on programming language features to
construct systems
High level programming languages can be useful in
core areas of operating system design

Questions?

References
All figures used were from one of these sources

“Extensibility, Safety and Performance in the SPIN Operating
System” by Bershand
“Protection is a Software Issue” by Bershand
Talk titled “Language Support for Extensible Operating Systems”
Talk titled “SPIN - An Application-Oriented Operating System”

All sources accessible through the SPIN papers website
http://www.cs.washington.edu/research/projects/spin/www/papers/

