
1

SEDA – Staged Event-Driven
Architecture

SEDA: An Architecture for well-conditioned
scalable internet services. Matt Welsh, David 

Culler & Eric Brewer

Presented by Rahul Agarwal
2

Overview

� Motivation
� Key Points
� Thread vs. Event concurrency
� SEDA
� Experimental Evaluation
� My Evaluation
� Questions to Consider

3

Authors

� Main Author
� Matt Welsh’s PhD thesis at UC Berkeley
� Now Assistant Professor in CS Dept at 

Harvard
� Currently working on wireless sensor 

networks
� Research interests in OS, Networks and 

Large Scale Distributed Systems
� Culler & Brewer - Advisors

4

Motivation

� High demand for web content – for 
example concurrent millions of users for 
Yahoo

� Load Spikes – “Slashdot Effect”
� Over provisioning support not feasible 

financially and events unannounced

� Web services getting more complex, 
requiring maximum server performance

5

Motivation – Well-conditioned 
Service

� A well-conditioned service behave like a 
simple pipeline

� As offered load increase throughput 
increases proportionally

� When saturated it does not degrade 
throughput – graceful degradation

6

Pipelining

� How can we improve throughput in a 
pipeline? Potential problems?



2

7

Key Points

� Application as a network of event-
driven stages connected by queues
� Dynamic Resource Controllers
� Automatic load tuning

� Thread pool sizing
� Event Batching
� Adaptive load shedding

� Support massive concurrency and 
prevent resources from being 
overcommitted

8

Thread-Based vs. Event-Based 
Concurrency
� Thread

� Thread-per-request
� OS switches and overlaps 

computation and I/O
� Synchronization required
� Performance Degradation

� Eg: RPC, RMI, DCOM
� Overcome by more 

control to OS
� Eg: SPIN, Exokernel, 

Nemesis
� Overcome by reuse of 

threads
� Eg: Apache, IIS, 

Netscape… everyone!

� Event
� One thread per CPU 

(controller)
� Process events generated 

by apps and kernel
� Each task implemented 

as a FSM with transitions 
triggered by events

� Pipelining!
� Eg: Flash, Zeus, JAWS

� Harder to modularize and 
engineer

9

Thread-Based vs. Event-Based 
Concurrency (Contd.)

Thread-Based

10

Thread-Based vs. Event-Based 
Concurrency (Contd.)

Event-Based

11

SEDA

12

SEDA - Stage
� Each stage has its own 

thread pool
� Controller adjusts 

resources
� Controller may set 

“admission control policy”
� Threshold, rate-control, 

load shedding

� Adjust thread pool size
� Adjust number of events 

processed



3

13

Overload Management

� Resource Containment
� Static method
� Usually set by admin

� Admission Control
� Parameter based
� Static or dynamically adjusted

� Control-theoretic approach
� Service Degradation

� Deliver lower fidelity Service
14

SEDA Admission Control Policy

� Using 90th percentile of set 
response time as 
performance metric

� Adaptive admission control
� Uses user classes (IPs, HTTP 

header info)
� Uses token bucket traffic 

shaper
� Possible to use drop-tail, 

FIFO, RED or other 
algorithms

15

Event-driven programming

� Benefits ☺
� Applications can map cleanly into modules
� Each stage self-contained
� Typically little/no data sharing

� Challenges
� Determining stages
� Stages can block
� Managing continuations between stages
� Tracking events

16

Software Contribution

� Sandstorm: SEDA Framework
� NBIO: Non-blocking I/O implementation
� Haboob: Implementation of a web-

server
� aTLS: library for SSL and TLS support

� All Java implementations, NBIO uses JNI
� Last updated July 2002

17

Experimental Evaluation

� Haboob web-server
� Static and dynamic 

file load –
SpecWEB99 
benchmark

� 1 to 1024 clients
� Total files size 

3.31Gb
� Memory Cache of 

200Mb

Throughput vs. #Clients

18

Evaluation (Contd.)

� Jain’s Fairness Index
� Equality of services 

to all clients
� Suppose server can 

support 100 requests
� Totally fair if it 

processes 10 
requests of each

� Unfair if say it 
processes 20 
requests each for 5 
users

Throughput and Fairness vs. 
#Clients



4

19

Evaluation (Contd.)
Cumulative response time 

distribution for 1024 clients

20

Evaluation (Contd.)
� Gnutella packet router

� Non-traditional internet service, routing P2P 
packets

� Ping: Discover other nodes
� Query: Search for files being served

21

Summary

� Notion of stages
� Explicit event queues
� Dynamic resource controllers
� + Improved performance
� + Well-conditioned services
� + Scalability

22

My Evaluation

� Increased performance at higher loads 
which was the motivation

� Marginal increase in throughput but 
significantly more fair for higher loads

� Throughput does not degrade when 
resources exhausted

� Response times of other servers better 
at lower loads

23

My Evaluation

� In context of duality of OS structures 
(Lauer & Needham)
� SEDA is message-oriented
� Message and Procedure oriented can be 

directly mapped, however independent of 
the application under consideration can 
performance indeed be similar?

� We will see how Capriccio does this – but 
no simple mapping!

24

Questions to consider

� SEDA is so good but the whole world 
(Apache, IIS, BEA, IBM, Netscape…) still uses 
thread-based servers?

� In real world scenarios how often are there 
load spikes, should goal be to increase 
average case performance instead?

� Is throughput or fairness a better metric?
� Being faster “despite” being in Java a bias or 

poor choice of language?



5

25

References
� Welsh, M., Culler, D., Brewer, E. (2001). SEDA: An architecture for well-

conditioned, scalable internet services. Proceeding of 18th SOSP, Banff, 
Canada, October 2001

� SEDA Project http://sourceforge.net/projects/seda
� Welsh, M. (2002). An architecture for well-conditioned, scalable internet 

services. PhD Thesis, University of California, Berkeley
� Welsh, M. (2001) SEDA: An architecture for well-conditioned, scalable 

internet services. Presentation at 18th SOSP, Lake Louise, Canada, October 
24, 2001

� Welsh, M., Culler, D., Adaptive overload control for busy internet servers. 
Unpublished.

� Pipelining: http://cse.stanford.edu/class/sophomore-college/projects-
00/risc/pipelining/

� Lauer, H. C. & Needham, R. M. (1978). On the duality of operating systems 
structures. In proceedings 2nd International Symposium on Operating 
Systems, IRIA, October 1978, reprinted in Operating Systems Review, 13, 
2 April 1979, pp 3-19.

� Behren, R. et al. (2003). Capricco: Scalable Threads for Internet Services.
Proc SOSP, New York, October 2003


