
1

SEDA – Staged Event-Driven
Architecture

SEDA: An Architecture for well-conditioned
scalable internet services. Matt Welsh, David 

Culler & Eric Brewer

Presented by Rahul Agarwal
2

Overview

Motivation
Key Points
Thread vs. Event concurrency
SEDA
Experimental Evaluation
My Evaluation
Questions to Consider

3

Authors

Main Author
Matt Welsh’s PhD thesis at UC Berkeley
Now Assistant Professor in CS Dept at 
Harvard
Currently working on wireless sensor 
networks
Research interests in OS, Networks and 
Large Scale Distributed Systems

Culler & Brewer - Advisors
4

Motivation

High demand for web content – for 
example concurrent millions of users for 
Yahoo
Load Spikes – “Slashdot Effect”

Over provisioning support not feasible 
financially and events unannounced

Web services getting more complex, 
requiring maximum server performance

5

Motivation – Well-conditioned 
Service

A well-conditioned service behave like a 
simple pipeline
As offered load increase throughput 
increases proportionally
When saturated it does not degrade 
throughput – graceful degradation

6

Pipelining

How can we improve throughput in a 
pipeline? Potential problems?



2

7

Key Points

Application as a network of event-
driven stages connected by queues

Dynamic Resource Controllers
Automatic load tuning

Thread pool sizing
Event Batching
Adaptive load shedding

Support massive concurrency and 
prevent resources from being 
overcommitted

8

Thread-Based vs. Event-Based 
Concurrency

Thread
Thread-per-request
OS switches and overlaps 
computation and I/O
Synchronization required
Performance Degradation

Eg: RPC, RMI, DCOM
Overcome by more 
control to OS

Eg: SPIN, Exokernel, 
Nemesis

Overcome by reuse of 
threads

Eg: Apache, IIS, 
Netscape… everyone!

Event
One thread per CPU 
(controller)
Process events generated 
by apps and kernel
Each task implemented 
as a FSM with transitions 
triggered by events
Pipelining!

Eg: Flash, Zeus, JAWS
Harder to modularize and 
engineer

9

Thread-Based vs. Event-Based 
Concurrency (Contd.)

Thread-Based

10

Thread-Based vs. Event-Based 
Concurrency (Contd.)

Event-Based

11

SEDA

12

SEDA - Stage
Each stage has its own 
thread pool
Controller adjusts 
resources

Controller may set 
“admission control policy”

Threshold, rate-control, 
load shedding

Adjust thread pool size
Adjust number of events 
processed



3

13

Overload Management

Resource Containment
Static method
Usually set by admin

Admission Control
Parameter based
Static or dynamically adjusted

Control-theoretic approach
Service Degradation

Deliver lower fidelity Service
14

SEDA Admission Control Policy

Using 90th percentile of set 
response time as 
performance metric
Adaptive admission control

Uses user classes (IPs, HTTP 
header info)
Uses token bucket traffic 
shaper
Possible to use drop-tail, 
FIFO, RED or other 
algorithms

15

Event-driven programming

Benefits ☺
Applications can map cleanly into modules
Each stage self-contained
Typically little/no data sharing

Challenges
Determining stages
Stages can block
Managing continuations between stages
Tracking events

16

Software Contribution

Sandstorm: SEDA Framework
NBIO: Non-blocking I/O implementation
Haboob: Implementation of a web-
server
aTLS: library for SSL and TLS support

All Java implementations, NBIO uses JNI
Last updated July 2002

17

Experimental Evaluation

Haboob web-server
Static and dynamic 
file load –
SpecWEB99 
benchmark
1 to 1024 clients
Total files size 
3.31Gb
Memory Cache of 
200Mb

Throughput vs. #Clients

18

Evaluation (Contd.)

Jain’s Fairness Index
Equality of services 
to all clients
Suppose server can 
support 100 requests
Totally fair if it 
processes 10 
requests of each
Unfair if say it 
processes 20 
requests each for 5 
users

Throughput and Fairness vs. 
#Clients



4

19

Evaluation (Contd.)
Cumulative response time 

distribution for 1024 clients

20

Evaluation (Contd.)
Gnutella packet router

Non-traditional internet service, routing P2P 
packets
Ping: Discover other nodes
Query: Search for files being served

21

Summary

Notion of stages
Explicit event queues
Dynamic resource controllers
+ Improved performance
+ Well-conditioned services
+ Scalability

22

My Evaluation

Increased performance at higher loads 
which was the motivation
Marginal increase in throughput but 
significantly more fair for higher loads
Throughput does not degrade when 
resources exhausted
Response times of other servers better 
at lower loads

23

My Evaluation

In context of duality of OS structures 
(Lauer & Needham)

SEDA is message-oriented
Message and Procedure oriented can be 
directly mapped, however independent of 
the application under consideration can 
performance indeed be similar?
We will see how Capriccio does this – but 
no simple mapping!

24

Questions to consider

SEDA is so good but the whole world 
(Apache, IIS, BEA, IBM, Netscape…) still uses 
thread-based servers?
In real world scenarios how often are there 
load spikes, should goal be to increase 
average case performance instead?
Is throughput or fairness a better metric?
Being faster “despite” being in Java a bias or 
poor choice of language?



5

25

References
Welsh, M., Culler, D., Brewer, E. (2001). SEDA: An architecture for well-
conditioned, scalable internet services. Proceeding of 18th SOSP, Banff, 
Canada, October 2001
SEDA Project http://sourceforge.net/projects/seda
Welsh, M. (2002). An architecture for well-conditioned, scalable internet 
services. PhD Thesis, University of California, Berkeley
Welsh, M. (2001) SEDA: An architecture for well-conditioned, scalable 
internet services. Presentation at 18th SOSP, Lake Louise, Canada, October 
24, 2001
Welsh, M., Culler, D., Adaptive overload control for busy internet servers. 
Unpublished.
Pipelining: http://cse.stanford.edu/class/sophomore-college/projects-
00/risc/pipelining/
Lauer, H. C. & Needham, R. M. (1978). On the duality of operating systems 
structures. In proceedings 2nd International Symposium on Operating 
Systems, IRIA, October 1978, reprinted in Operating Systems Review, 13, 
2 April 1979, pp 3-19.
Behren, R. et al. (2003). Capricco: Scalable Threads for Internet Services.
Proc SOSP, New York, October 2003


