
1

Practical Byzantine Fault
Tolerance

Castro and Liskov, OSDI 1999

Nathan Baker, presenting on 23 September 2005

2

Practical Byzantine Fault Tolerance

● What is a Byzantine fault?

● Rationale for Byzantine Fault Tolerance

● BFT Algorithm

● Conclusion

3

What is a Byzantine fault?

● Arbitrary node behavior

● Failure to return a result

● Return of an incorrect result

● Return of a deliberately misleading result

● Return of a differing result to different parts of
the system

● Source: Byzantine Generals Problem,
Lamport, Shostak, and Pease (1982)

4

Rationale for BFT

● Guard against malicious attacks

● Prevent faulty code at a single node from
corrupting the system

● Ultimate goal: provide system consistency
even when nodes may be inconsistent

● Useful in distributed areas like file servers
or automated control systems where state is
very important

5

Overview of Solution

● n generals need to achieve consensus

● f generals may be traitors

● Consider a voting algorithm

● If a general sees f + 1 identical responses, that
response must be correct

6

Simple Example

● Consider four replicas trying to agree on the
value of a single bit (attack/don't attack)

Replica 1 Replica 2 Replica 3 Replica 4
Replica 1 1
Replica 2 1
Replica 3 1
Replica 4 0

2

7

Simple Example

● All replicas send their value to the other
replicas

Replica 1 Replica 2 Replica 3 Replica 4
Replica 1 1 1 1 0
Replica 2 1 1 1 0
Replica 3 1 1 1 0
Replica 4 1 1 1 0

8

Simple Example

● Now, all replicas send their entire vector to
all other replicas

● 2 sends values for <2,3,4> to 1 and <1,2,4> to 3

Replica 1 Replica 2 Replica 3 Replica 4
Replica 1 1 <1,1,0> <1,1,0> <0,0,0>
Replica 2 <1,1,0> 1 <1,1,0> <0,0,0>
Replica 3 <1,1,0> <1,1,0> 1 <0,0,0>
Replica 4 <1,1,1> <1,1,1> <1,1,1> 0

9

Simple Example

● Result is the most frequent value in the
vector

Replica 1 Replica 2 Replica 3 Replica 4
Replica 1 1 1 1 0
Replica 2 1 1 1 0
Replica 3 1 1 1 0
Replica 4 1 1 1 0

10

Simple Example

● Question: in this example we had 4 replicas,
one of which was faulty. Would this work
with 3 replicas, one of which was faulty?

● Hint: this is an asynchronous environment

11

BFT Algorithm

● Algorithm discussion

● Overview

● Details

● BFS

● Evaluation

12

BFT Algorithm Overview

● Previous work was slow-running or relied on
synchrony for safety.

● This algorithm (BFT) provides safety and
liveness over an asynchronous network.

● Safety: the system maintains state and looks to
the client like a non-replicated remote service.
Safety includes a total ordering of requests.

● Liveness: clients will eventually receive a reply
to every request sent, provided the network is
functioning.

3

13

BFT Algorithm Overview

● Based on state machine replication

● Messages signed by public key cryptography

● Message digests created using collision-
resistant hash functions

● Uses consensus and propagation of system
views: state is only modified when the
functioning replicas agree on the change

14

BFT Algorithm Overview

● For n clients, there are n 'views', {0..n-1}.

● In view i, node i is the primary node

● View change is increment mod n

● View change occurs when 2f nodes believe the
primary has failed

● Guaranteed safety and liveness provided
less than = f replicas have failed.��n− 1�

3
�

15

BFT Algorithm: Normal Operation

1.The client sends a request to the primary.

2.The primary assigns the request a sequence
number and broadcasts this to all replicas
(pre-prepare).

3.The replicas acknowledge this sequence
number (prepare).

4.Once 2f prepares have been received, a client
broadcasts acceptance of the request
(commit).

16

BFT Algorithm: Normal Operation

5.Once 2f +1 commits have been received, a
client places the request in the queue.

5.1.In a non-faulty client, the request queue will
be totally ordered by sequence number.

6.Once all prior requests have been
completed, the request will be executed
and the result sent directly to the client.

7.All these messages are logged.

17

BFT Algorithm: Normal Operation

request pre-prepare prepare commit reply
Client

Primary

B2

B1

B3 x

Phase 1: Client sends a request to the primary.
The primary can then validate the message and
propose a sequence number for it.

18

BFT Algorithm: Normal Operation

request pre-prepare prepare commit reply
Client

Primary

B2

B1

B3 x

Phase 2: Primary sends pre-prepare message
to all backups. This allows the backups to validate
the message and receive the sequence number.

4

19

BFT Algorithm: Normal Operation

request pre-prepare prepare commit reply
Client

Primary

B2

B1

B3 x

Phase 3: All functioning backups send prepare
message to all other backups. This allows replicas
to agree on a total ordering.

20

BFT Algorithm: Normal Operation

request pre-prepare prepare commit reply
Client

Primary

B2

B1

B3 x

Phase 4: All replicas multicast a commit. The
replicas have agreed on an ordering and have
acknowledged the receipt of the request.

21

BFT Algorithm: Normal Operation

request pre-prepare prepare commit reply
Client

Primary

B2

B1

B3 x

Phase 5: Each functioning replica sends a
reply directly to the client. This bypasses the
case where the primary fails between request
and reply.

22

BFT Algorithm: View Changes

● What if the primary is faulty?

● The client uses a timeout. When this timeout
expires, the request is sent to all replicas.

● If a replica already knows about the request,
the rebroadcast is ignored.

● If the replica does not know about the request,
it will start a timer.

● On timeout of this second timer, the replica
starts the view change process.

23

BFT Algorithm: View Changes

● If a replica's timer expires, it sends a view
change message.

● This message contains the system state (in the
form of archived messages) so that other nodes
will know that the replica has not failed.

● If the current view is v, node v+1 (mod n)
waits for 2f valid view-change messages.

24

BFT Algorithm: View Changes

● Once v+1 has seen 2f view-change
messages, it multicasts a new-view message

● This message contains all the valid view change
messages received by v+1 as well as a set O of
all requests that may not have been completed
yet (due to primary failure).

● After a replica receives a valid view-change
message, it enters view v+1 and processes O

● While view change is occurring, no new
requests are accepted.

5

25

BFT Algorithm: Client's perspective

● The client must be BFT-aware:

● Must implement timeout for view-change

● Must wait for replies directly from replicas

● The client waits for f+1 replies, then
accepts the result.

● Seamless integration requires three-tier
approach.

26

BFT Algorithm: Client's Perspective

Replicas BFT Client Calling Code

API

In order to provide
seamless interaction
with the calling code,
there should be a
client layer between
the replicas and
the program.

27

BFT Algorithm: Evaluation

● 3f+1 replicas required--expensive!

2 4 6 8 10

5

10

15

20

25

30

f

R

ep
lic

as

28

BFT Algorithm: Evaluation

● Problems

● Not scalable

● Significant overhead

● However

● Provides Byzantine fault tolerance that can be
used in real-world applications

29

Questions?

30

BFT Algorithm: BFS

● The authors implemented a Byzantine Fault-
Tolerant NFS system called BFS.

● BFS is comparable in performance to NFS on
average, while providing tolerance for
Byzantine faults.

● View changes not implemented in BFS.

6

31

BFT Optimizations

● Optimization

● Checkpoints/Garbage Collection

● Reducing communication

● Message Authentication Codes

32

BFT Optimizations: Checkpoints

● Pre-prepare, prepare, and commit messages
are stored to provide proof of correctness.
Storing these messages can be expensive.

● Instead, a checkpoint system is used

● A checkpoint size c is set

● A proof of correctness is generated when s mod
c = 0

● This is called a checkpoint.

33

BFT Optimizations: Checkpoints

● After a checkpoint is produced, a
checkpoint message is multicast

● Once 2f+1 checkpoint messages have been
collected, that checkpoint is considered
stable and all archived messages with s less
than the checkpoint number are discarded.
All earlier checkpoints are also discarded.

34

Optimizations: Reducing Messages

● This protocol is very message intensive, but
there are three ways it can be altered to
limit traffic:

● Single result

● The client request designates only one replica
to send the result, and others just send digests

● If the correct result is not received, the client
requests that all nodes send the replies.

● Only useful for large replies

35

Optimizations: Reducing Messages

● Tentative replies

● If a replica's queue is empty, it can compute
the result upon the receipt of 2f prepare
messages.

● The replicas then send these tentative replies
to the client.

● If the client receives 2f+1 matching tentative
replies, this is equivalent to a commit. If not,
it retransmits the request and waits for f+1
committed replies.

36

Optimizations: Reducing Messages

● Read-only requests

● The client can transmit read-only requests
directly to all replicas.

● After verifying the request, the reply can be
processed and sent directly to the client.

● If the client receives 2f+1 identical replies, it
accepts the result.

● If not, it retransmits the request as a normal
(read/write) operation.

